Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(3): 149046, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642871

RESUMO

The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.


Assuntos
Ciona intestinalis , Proteínas Mitocondriais , Fosforilação Oxidativa , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/enzimologia , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/enzimologia , Urocordados/genética , Urocordados/enzimologia , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Filogenia , Proteínas de Plantas
2.
Genet Mol Biol ; 47(1): e20230202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446983

RESUMO

Drosophila melanogaster is undoubtedly one of the most useful model organisms in biology. Initially used in solidifying the principles of heredity, and establishing the basic concepts of population genetics and of the synthetic theory of evolution, it can currently offer scientists much more: the possibility of investigating a plethora of cellular and biological mechanisms, from development and function of the immune system to animal neurogenesis, tumorigenesis and beyond. Extensive resources are available for the community of Drosophila researchers worldwide, including an ever-growing number of mutant, transgenic and genomically-edited lines currently carried by stock centers in North America, Europe and Asia. Here, we provide evidence for the importance of stock centers in sustaining the substantial increase in the output of Drosophila research worldwide in recent decades. We also discuss the challenges that Brazilian Drosophila scientists face to keep their research projects internationally competitive, and argue that difficulties in importing fly lines from international stock centers have significantly stalled the progression of all Drosophila research areas in the country. Establishing a local stock center might be the first step towards building a strong local Drosophila community that will likely contribute to all areas of life sciences research.

3.
Biosci Rep ; 42(11)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36254835

RESUMO

All 37 mitochondrial DNA (mtDNA)-encoded genes involved with oxidative phosphorylation and intramitochondrial protein synthesis, and several nuclear-encoded genes involved with mtDNA replication, transcription, repair and recombination are conserved between the fruit fly Drosophila melanogaster and mammals. This, in addition to its easy genetic tractability, has made Drosophila a useful model for our understanding of animal mtDNA maintenance and human mtDNA diseases. However, there are key differences between the Drosophila and mammalian systems that feature the diversity of mtDNA maintenance processes inside animal cells. Here, we review what is known about mtDNA maintenance in Drosophila, highlighting areas for which more research is warranted and providing a perspective preliminary in silico and in vivo analyses of the tissue specificity of mtDNA maintenance processes in this model organism. Our results suggest new roles (or the lack thereof) for well-known maintenance proteins, such as the helicase Twinkle and the accessory subunit of DNA polymerase γ, and for other Drosophila gene products that may even aid in shedding light on mtDNA maintenance in other animals. We hope to provide the reader some interesting paths that can be taken to help our community show how Drosophila may impact future mtDNA maintenance research.


Assuntos
DNA Mitocondrial , Proteínas de Drosophila , Animais , Humanos , DNA Mitocondrial/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Proteínas de Drosophila/metabolismo , Replicação do DNA/genética , Proteínas Mitocondriais/genética , Mamíferos/metabolismo
4.
J Vis Exp ; (175)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34633381

RESUMO

The usefulness of Drosophila as a model organism for the study of human diseases, behaviors and basic biology is unquestionable. Although practical, Drosophila research lacks popularity in developing countries, possibly due to the misinformed idea that establishing a lab and performing relevant experiments with such tiny insects is difficult and requires expensive, specialized apparatuses. Here, we describe how to build an affordable flylab to quantitatively analyze a myriad of behavioral parameters in D. melanogaster, by 3D-printing many of the necessary pieces of equipment. We provide protocols to build in-house vial racks, courtship arenas, apparatuses for locomotor assays, etc., to be used for general fly maintenance and to perform behavioral experiments using adult flies and larvae. We also provide protocols on how to use more sophisticated systems, such as a high resolution oxygraph, to measure mitochondrial oxygen consumption in larval samples, and show its association with behavioral changes in the larvae upon the xenotopic expression of the mitochondrial alternative oxidase (AOX). AOX increases larval activity and mitochondrial leak respiration, and accelerates development at low temperatures, which is consistent with a thermogenic role for the enzyme. We hope these protocols will inspire researchers, especially from developing countries, to use Drosophila to easily combine behavior and mitochondrial metabolism data, which may lead to information on genes and/or environmental conditions that may also regulate human physiology and disease states.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Comportamento Animal , Humanos , Larva , Mitocôndrias
5.
Mitochondrion ; 61: 147-158, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619353

RESUMO

The COVID-19 pandemic prompted the FDA to authorize a new nucleoside analogue, remdesivir, for emergency use in affected individuals. We examined the effects of its active metabolite, remdesivir triphosphate (RTP), on the activity of the replicative mitochondrial DNA polymerase, Pol γ. We found that while RTP is not incorporated by Pol γ into a nascent DNA strand, it remains associated with the enzyme impeding its synthetic activity and stimulating exonucleolysis. In spite of that, we found no evidence for deleterious effects of remdesivir treatment on the integrity of the mitochondrial genome in human cells in culture.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , DNA Polimerase gama/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/biossíntese , Fibroblastos/metabolismo , SARS-CoV-2 , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , COVID-19/metabolismo , Células Cultivadas , Humanos
6.
Methods Mol Biol ; 2281: 1-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847949

RESUMO

Maintenance of genomes is fundamental for all living organisms. The diverse processes related to genome maintenance entail the management of various intermediate structures, which may be deleterious if unresolved. The most frequent intermediate structures that result from the melting of the DNA duplex are single-stranded (ss) DNA stretches. These are thermodynamically less stable and can spontaneously fold into secondary structures, which may obstruct a variety of genome processes. In addition, ssDNA is more prone to breaking, which may lead to the formation of deletions or DNA degradation. Single-stranded DNA-binding proteins (SSBs) bind and stabilize ssDNA, preventing the abovementioned deleterious consequences and recruiting the appropriate machinery to resolve that intermediate molecule. They are present in all forms of life and are essential for their viability, with very few exceptions. Here we present an introductory chapter to a volume of the Methods in Molecular Biology dedicated to SSBs, in which we provide a general description of SSBs from various taxa.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Genes Essenciais , Modelos Moleculares , Conformação Molecular
7.
Methods Mol Biol ; 2281: 313-322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847968

RESUMO

Defects in mitochondrial DNA (mtDNA) maintenance may lead to disturbances in mitochondrial homeostasis and energy production in eukaryotic cells, causing diseases. During mtDNA replication, the mitochondrial single-stranded DNA-binding protein (mtSSB) stabilizes and protects the exposed single-stranded mtDNA from nucleolysis; perhaps more importantly, it appears to coordinate the actions of both the replicative mtDNA helicase Twinkle and DNA polymerase gamma at the replication fork. Here, we describe a helicase stimulation protocol to test in vitro the functional interaction between mtSSB and variant forms of Twinkle. We show for the first time that the C-terminal tail of Twinkle is important for such an interaction, and that it negatively regulates helicase unwinding activity in a salt-dependent manner.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Mutação , Sítios de Ligação , DNA Helicases/genética , Replicação do DNA , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Humanos , Proteínas Mitocondriais/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
8.
J Physiol ; 599(11): 2969-2986, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823064

RESUMO

KEY POINTS: The costs associated with immune and thermal responses may exceed the benefits to the host during severe inflammation. In this case, regulated hypothermia instead of fever can occur in rodents as a beneficial strategy to conserve energy for vital functions with consequent tissue protection and hypoxia prevention. We tested the hypothesis that this phenomenon is not exclusive to mammals, but extends to the other endothermic group, birds. A decrease in metabolic rate without any failure in mitochondrial respiration, nor oxygen delivery, is the main evidence supporting the regulated nature of endotoxin-induced hypothermia in chicks. Thermolytic mechanisms such as tachypnea and cutaneous vasodilatation can also be recruited to facilitate body temperature decrease under lipopolysaccharide treatment, especially in the cold. Our findings bring a new perspective for evolutionary medicine studies on energy trade-off in host defence because regulated hypothermia may be a phenomenon spread among vertebrates facing a severe immune challenge. ABSTRACT: A switch from fever to regulated hypothermia can occur in mammals under circumstances of reduced physiological fitness (e.g. sepsis) to direct energy to defend vital systems. Birds in which the cost to resist a pathogen is additive to the highest metabolic rate and body temperature (Tb ) among vertebrates may also benefit from regulated hypothermia during systemic inflammation. Here, we show that the decrease in Tb observed during an immune challenge in birds is a regulated hypothermia, and not a result of metabolic failure. We investigated O2 consumption (thermogenesis index), ventilation (respiratory heat loss), skin temperature (sensible heat loss) and muscle mitochondrial respiration (thermogenic tissue) during Tb fall in chicken chicks challenged with endotoxin [lipopolysaccharide (LPS)]. Chicks injected with LPS were also tested regarding the capacity to raise O2 consumption to meet an increased demand driven by 2,4-dinitrophenol. LPS decreased Tb and the metabolic rate of chicks without affecting muscle uncoupled, coupled and non-coupled mitochondrial respiration. LPS-challenged chicks were indeed capable of increasing metabolic rate in response to 2,4-dinitrophenol, indicating no O2 delivery limitation. Additionally, chicks did not attempt to prevent Tb from falling during hypothermia but, instead, activated cutaneous and respiratory thermolytic mechanisms, providing an additional cooling force. These data provide the first evidence of the regulated nature of the hypothermic response to endotoxin in birds. Therefore, it changes the current understanding of bird's thermoregulation during severe inflammation, indicating that regulated hypothermia is either a convergent trait for endotherms or a conserved response among vertebrates, which adds a new perspective for evolutionary medicine research.


Assuntos
Hipotermia , Animais , Temperatura Corporal , Regulação da Temperatura Corporal , Galinhas , Endotoxinas/toxicidade
9.
Genet Mol Biol ; 43(1 suppl. 1): e20190069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32141473

RESUMO

Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial diseases. Mutations in the genes encoding components of the mitochondrial replisome, such as DNA polymerase gamma (Pol γ) and the mtDNA helicase Twinkle, have been associated with the accumulation of such deletions and the development of pathological conditions in humans. Recently, we demonstrated that changes in the level of wild-type Twinkle promote mtDNA deletions, which implies that not only mutations in, but also dysregulation of the stoichiometry between the replisome components is potentially pathogenic. The mechanism(s) by which alterations to the replisome function generate mtDNA deletions is(are) currently under debate. It is commonly accepted that stalling of the replication fork at sites likely to form secondary structures precedes the deletion formation. The secondary structural elements can be bypassed by the replication-slippage mechanism. Otherwise, stalling of the replication fork can generate single- and double-strand breaks, which can be repaired through recombination leading to the elimination of segments between the recombination sites. Here, we discuss aberrances of the replisome in the context of the two debated outcomes, and suggest new mechanistic explanations based on replication restart and template switching that could account for all the deletion types reported for patients.

10.
J Exp Zool A Ecol Integr Physiol ; 331(6): 341-356, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31218852

RESUMO

The mitochondrial alternative oxidase, AOX, present in most eukaryotes apart from vertebrates and insects, catalyzes the direct oxidation of ubiquinol by oxygen, by-passing the terminal proton-motive steps of the respiratory chain. Its physiological role is not fully understood, but it is proposed to buffer stresses in the respiratory chain similar to those encountered in mitochondrial diseases in humans. Previously, we found that the ubiquitous expression of AOX from Ciona intestinalis in Drosophila perturbs the development of flies cultured under low-nutrient conditions (media containing only glucose and yeast). Here we tested the effects of a wide range of nutritional supplements on Drosophila development, to gain insight into the physiological mechanism underlying this developmental failure. On low-nutrient medium, larvae contained decreased amounts of triglycerides, lactate, and pyruvate, irrespective of AOX expression. Complex food supplements, including treacle (molasses), restored normal development to AOX-expressing flies, but many individual additives did not. Inhibition of AOX by treacle extract was excluded as a mechanism, since the supplement did not alter the enzymatic activity of AOX in vitro. Furthermore, antibiotics did not influence the organismal phenotype, indicating that commensal microbes were not involved. Fractionation of treacle identified a water-soluble fraction with low solubility in ethanol, rich in lactate and tricarboxylic acid cycle intermediates, which contained the critical activity. We propose that the partial activation of AOX during metamorphosis impairs the efficient use of stored metabolites, resulting in developmental failure.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Drosophila/enzimologia , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Ciona intestinalis/enzimologia , Dieta , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Melaço/análise , Oxirredutases/genética , Proteínas de Plantas/genética
11.
G3 (Bethesda) ; 9(7): 2225-2234, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31076384

RESUMO

Drosophilamelanogaster, like most animal species, displays considerable genetic variation in both nuclear and mitochondrial DNA (mtDNA). Here we tested whether any of four natural mtDNA variants was able to modify the effect of the phenotypically mild, nuclear tko25t mutation, affecting mitochondrial protein synthesis. When combined with tko25t , the mtDNA from wild strain KSA2 produced pupal lethality, accompanied by the presence of melanotic nodules in L3 larvae. KSA2 mtDNA, which carries a substitution at a conserved residue of cytochrome b that is predicted to be involved in subunit interactions within respiratory complex III, conferred drastically decreased respiratory capacity and complex III activity in the tko25t but not a wild-type nuclear background. The complex III inhibitor antimycin A was able to phenocopy effects of the tko25t mutation in the KSA2 mtDNA background. This is the first report of a lethal, nuclear-mitochondrial interaction within a metazoan species, representing a paradigm for understanding genetic interactions between nuclear and mitochondrial genotype relevant to human health and disease.


Assuntos
Núcleo Celular/genética , Drosophila melanogaster/genética , Genótipo , Mitocôndrias/genética , Mutações Sintéticas Letais/genética , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , DNA Mitocondrial , Drosophila melanogaster/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Mitocôndrias/metabolismo , Modelos Moleculares , Mutação , Fosforilação Oxidativa , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade
12.
Biochim Biophys Acta Mol Basis Dis ; 1865(4): 854-866, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342157

RESUMO

The alternative respiratory chain (aRC), comprising the alternative NADH dehydrogenases (NDX) and quinone oxidases (AOX), is found in microbes, fungi and plants, where it buffers stresses arising from restrictions on electron flow in the oxidative phosphorylation system. The aRC enzymes are also found in species belonging to most metazoan phyla, including some chordates and arthropods species, although not in vertebrates or in Drosophila. We postulated that the aRC enzymes might be deployed to alleviate pathological stresses arising from mitochondrial dysfunction in a wide variety of disease states. However, before such therapies can be contemplated, it is essential to understand the effects of aRC enzymes on cell metabolism and organismal physiology. Here we report and discuss new findings that shed light on the functions of the aRC enzymes in animals, and the unexpected benefits and detriments that they confer on model organisms. In Ciona intestinalis, the aRC is induced by hypoxia and by sulfide, but is unresponsive to other environmental stressors. When expressed in Drosophila, AOX results in impaired survival under restricted nutrition, in addition to the previously reported male reproductive anomalies. In contrast, it confers cold resistance to developing and adult flies, and counteracts cell signaling defects that underlie developmental dysmorphologies. The aRC enzymes may also influence lifespan and stress resistance more generally, by eliciting or interfering with hormetic mechanisms. In sum, their judicious use may lead to major benefits in medicine, but this will require a thorough characterization of their properties and physiological effects.


Assuntos
Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Quinona Redutases/metabolismo , Animais , Respiração Celular , Ciona intestinalis , Proteínas de Drosophila/genética , Drosophila melanogaster , Transporte de Elétrons , Mitocôndrias/enzimologia , NADH Desidrogenase/genética , Quinona Redutases/genética
13.
Sci Rep ; 8(1): 10882, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022066

RESUMO

The xenotopic expression of the alternative oxidase AOX from the tunicate Ciona intestinalis in diverse models of human disease partially alleviates the phenotypic effects of mitochondrial respiratory chain defects. AOX is a non-proton pumping, mitochondrial inner membrane-bound, single-subunit enzyme that can bypass electron transport through the cytochrome segment, providing an additional site for ubiquinone reoxidation and oxygen reduction upon respiratory chain overload. We set out to investigate whether AOX expression in Drosophila could counteract the effects of mitochondrial DNA (mtDNA) replication defects caused by disturbances in the mtDNA helicase or DNA polymerase γ. We observed that the developmental arrest imposed by either the expression of mutant forms of these enzymes or their knockdown was not rescued by AOX. Considering also the inability of AOX to ameliorate the phenotype of tko25t, a fly mutant with mitochondrial translation deficiency, we infer that this alternative enzyme may not be applicable to cases of mitochondrial gene expression defects. Finding the limitations of AOX applicability will help establish the parameters for the future putative use of this enzyme in gene therapies for human mitochondrial diseases.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Mitocôndrias/patologia , Doenças Mitocondriais/fisiopatologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Transporte de Elétrons , Feminino , Genes Letais , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação , Oxirredutases/genética , Fenótipo , Proteínas de Plantas/genética
14.
Cell Biol Int ; 42(6): 664-669, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29384231

RESUMO

The mitochondrial respiratory chain in vertebrates and arthropods is different from that of most other eukaryotes because they lack alternative enzymes that provide electron transfer pathways additional to the oxidative phosphorylation (OXPHOS) system. However, the use of diverse experimental models, such as human cells in culture, Drosophila melanogaster and the mouse, has demonstrated that the transgenic expression of these alternative enzymes can impact positively many phenotypes associated with human mitochondrial and other cellular dysfunction, including those typically presented in complex IV deficiencies, Parkinson's, and Alzheimer's. In addition, these enzymes have recently provided extremely valuable data on how, when, and where reactive oxygen species, considered by many as "by-products" of OXPHOS, can contribute to animal longevity. It has also been shown that the expression of the alternative enzymes is thermogenic in cultured cells, causes reproductive defects in flies, and enhances the deleterious phenotype of some mitochondrial disease models. Therefore, all the reported beneficial effects must be considered with caution, as these enzymes have been proposed to be deployed in putative gene therapies to treat human diseases. Here, we present a brief review of the scientific data accumulated over the past decade that show the benefits and the risks of introducing alternative branches of the electron transport into mammalian and insect mitochondria, and we provide a perspective on the future of this research field.


Assuntos
Animais Geneticamente Modificados/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Humanos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
15.
Nucleic Acids Res ; 46(6): 3034-3046, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29432582

RESUMO

Pathological conditions impairing functions of mitochondria often lead to compensatory upregulation of the mitochondrial DNA (mtDNA) replisome machinery, and the replicative DNA helicase appears to be a key factor in regulating mtDNA copy number. Moreover, mtDNA helicase mutations have been associated with structural rearrangements of the mitochondrial genome. To evaluate the effects of elevated levels of the mtDNA helicase on the integrity and replication of the mitochondrial genome, we overexpressed the helicase in Drosophila melanogaster Schneider cells and analyzed the mtDNA by two-dimensional neutral agarose gel electrophoresis and electron microscopy. We found that elevation of mtDNA helicase levels increases the quantity of replication intermediates and alleviates pausing at the replication slow zones. Though we did not observe a concomitant alteration in mtDNA copy number, we observed deletions specific to the segment of repeated elements in the immediate vicinity of the origin of replication, and an accumulation of species characteristic of replication fork stalling. We also found elevated levels of RNA that are retained in the replication intermediates. Together, our results suggest that upregulation of mtDNA helicase promotes the process of mtDNA replication but also results in genome destabilization.


Assuntos
DNA Helicases/genética , Replicação do DNA/genética , Drosophila melanogaster/genética , Genoma Mitocondrial/genética , Animais , Linhagem Celular , DNA Helicases/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Dosagem de Genes , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
16.
PLoS One ; 12(7): e0180484, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28723946

RESUMO

The carnivorous plants of the family Lentibulariaceae have attained recent attention not only because of their interesting lifestyle, but also because of their dynamic nuclear genome size. Lentibulariaceae genomes span an order of magnitude and include species with the smallest genomes in angiosperms, making them a powerful system to study the mechanisms of genome expansion and contraction. However, little is known about mitochondrial DNA (mtDNA) sequences of this family, and the evolutionary forces that shape this organellar genome. Here we report the sequencing and assembly of the complete mtDNA from the endemic terrestrial Brazilian species Utricularia reniformis. The 857,234bp master circle mitochondrial genome encodes 70 transcriptionaly active genes (42 protein-coding, 25 tRNAs and 3 rRNAs), covering up to 7% of the mtDNA. A ltrA-like protein related to splicing and mobility and a LAGLIDADG homing endonuclease have been identified in intronic regions, suggesting particular mechanisms of genome maintenance. RNA-seq analysis identified properties with putative diverse and important roles in genome regulation and evolution: 1) 672kbp (78%) of the mtDNA is covered by full-length reads; 2) most of the 243kbp intergenic regions exhibit transcripts; and 3) at least 69 novel RNA editing sites in the protein-coding genes. Additional genomic features are hypothetical ORFs (48%), chloroplast insertions, including truncated plastid genes that have been lost from the chloroplast DNA (5%), repeats (5%), relics of transposable elements mostly related to LTR retrotransposons (5%), and truncated mitovirus sequences (0.4%). Phylogenetic analysis based on 32 different Lamiales mitochondrial genomes corroborate that Lentibulariaceae is a monophyletic group. In summary, the U. reniformis mtDNA represents the eighth largest plant mtDNA described to date, shedding light on the genomic trends and evolutionary characteristics and phylogenetic history of the family Lentibulariaceae.


Assuntos
Carnivoridade/fisiologia , Evolução Molecular , Genoma Mitocondrial , Genoma de Planta , Magnoliopsida/genética , Filogenia , DNA Intergênico , DNA Mitocondrial/genética , DNA de Plantas/genética , Íntrons
17.
BMC Dev Biol ; 17(1): 9, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673232

RESUMO

BACKGROUND: Mitochondrial alternative respiratory-chain enzymes are phylogenetically widespread, and buffer stresses affecting oxidative phosphorylation in species that possess them. However, they have been lost in the evolutionary lineages leading to vertebrates and arthropods, raising the question as to what survival or reproductive disadvantages they confer. Recent interest in using them in therapy lends a biomedical dimension to this question. METHODS: Here, we examined the impact of the expression of Ciona intestinalis alternative oxidase, AOX, on the reproductive success of Drosophila melanogaster males. Sperm-competition assays were performed between flies carrying three copies of a ubiquitously expressed AOX construct, driven by the α-tubulin promoter, and wild-type males of the same genetic background. RESULTS: In sperm-competition assays, AOX conferred a substantial disadvantage, associated with decreased production of mature sperm. Sperm differentiation appeared to proceed until the last stages, but was spatially deranged, with spermatozoids retained in the testis instead of being released to the seminal vesicle. High AOX expression was detected in the outermost cell-layer of the testis sheath, which we hypothesize may disrupt a signal required for sperm maturation. CONCLUSIONS: AOX expression in Drosophila thus has effects that are deleterious to male reproductive function. Our results imply that AOX therapy must be developed with caution.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espermatogênese/genética , Animais , Ciona intestinalis/genética , Drosophila melanogaster/enzimologia , Expressão Gênica , Masculino , Testículo/embriologia , Testículo/enzimologia
18.
Mitochondrion ; 34: 75-83, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28214560

RESUMO

We evaluated the role of natural mitochondrial DNA (mtDNA) variation on mtDNA copy number, biochemical features and life history traits in Drosophila cybrid strains. We demonstrate the effects of both coding region and non-coding A+T region variation on mtDNA copy number, and demonstrate that copy number correlates with mitochondrial biochemistry and metabolically important traits such as development time. For example, high mtDNA copy number correlates with longer development times. Our findings support the hypothesis that mtDNA copy number is modulated by mtDNA genome variation and suggest that it affects OXPHOS efficiency through changes in the organization of the respiratory membrane complexes to influence organismal phenotype.


Assuntos
DNA Mitocondrial/genética , Drosophila/genética , Drosophila/fisiologia , Genótipo , Fenótipo , Animais , Respiração Celular , Feminino , Dosagem de Genes , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa
19.
Crit Rev Biochem Mol Biol ; 51(1): 53-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26615986

RESUMO

The mitochondrial replicative DNA helicase is essential for animal mitochondrial DNA (mtDNA) maintenance. Deleterious mutations in the gene that encodes it cause mitochondrial dysfunction manifested in developmental delays, defects and arrest, limited life span, and a number of human pathogenic phenotypes that are recapitulated in animals across taxa. In fact, the replicative mtDNA helicase was discovered with the identification of human disease mutations in its nuclear gene, and based upon its deduced amino acid sequence homology with bacteriophage T7 gene 4 protein (T7 gp4), a bi-functional primase-helicase. Since that time, numerous investigations of its structure, mechanism, and physiological relevance have been reported, and human disease alleles have been modeled in the human, mouse, and Drosophila systems. Here, we review this literature and draw evolutionary comparisons that serve to shed light on its divergent features.


Assuntos
DNA Helicases/metabolismo , Mitocôndrias/enzimologia , Sequência de Aminoácidos , Animais , DNA Helicases/química , Evolução Molecular , Humanos , Modelos Animais , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos
20.
Sci Rep ; 5: 18295, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26672986

RESUMO

The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression.


Assuntos
Ciona intestinalis/enzimologia , Drosophila melanogaster/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ferro/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Linhagem Celular , Ciona intestinalis/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ferro/química , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Consumo de Oxigênio , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA