Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37496232

RESUMO

AIMS: The aim of this study was to investigate the antibacterial and antibiofilm potential of cordiaquinones B, E, L, N, and O against different Staphylococci strains, in addition to analyzing in silico the observed effect. METHODS AND RESULTS: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined according to CLSI guidelines. The inhibition of biofilm formation was investigated at sub-MICs. Atomic force microscopy (AFM) and density functional theory method were performed. The tested strains of Staphylococcus spp. were susceptible to cordiaquinones B, E, and L, among which cordiaquinone B exerted a bactericidal effect, confirmed by a bacterial growth curve study, against Staphylococcus saprophyticus. Cordiaquinones B and E showed lowest MBC values against S. saprophyticus. AFM revealed that cordiaquinone L reduced the mean cell size of S. saprophyticus. Cordiaquinones B and E inhibited the biofilm formation ability of S. aureus by ∼90%. The in silico analysis suggested that the antimicrobial activity of cordiaquinones is driven by their electron donation capability. CONCLUSIONS: Cordiaquinones inhibit the growth and biofilm formation (virulence factor) of both methicillin-sensitive and methicillin-resistant Staphylococci strains, indicating their antimicrobial potential.


Assuntos
Antibacterianos , Biofilmes , Staphylococcus aureus Resistente à Meticilina , Naftoquinonas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Naftoquinonas/farmacologia , Antibacterianos/farmacologia , Simulação por Computador , Testes de Sensibilidade Microbiana , Cordia/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Viabilidade Microbiana/efeitos dos fármacos
2.
J Ethnopharmacol ; 274: 114059, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33794333

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Brazil, ethnopharmacological studies show that Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz is commonly used in folk medicine as an antifungal, antimicrobial and anti-inflammatory. In the Amazon region, the dried fruit powder of L. ferrea are widely used empirically by the population in an alcoholic tincture as an antimicrobial mouthwash in oral infections and the infusion is also recommended for healing oral wounds. However, there are few articles that have evaluated the antimicrobial activity against oral pathogens in a biofilm model, identifying active compounds and mechanisms of action. AIM OF THE STUDY: The aim of this study was to evaluate the antimicrobial and anti-adherence activities of the ethanolic extract, fractions and isolated compounds (gallic acid and ethyl gallate) of the fruit and seed of L. ferrea against Streptococcus mutans. The inhibition of acidicity/acidogenicity and the expression of the S. mutans GTF genes in biofilms were also evaluated. MATERIALS AND METHODS: Minimal Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Minimum Inhibitory Concentration of Cell Adhesion (MICA) were evaluated with ethanolic extract (EELF), fractions, gallic acid (GA) and ethyl gallate (EG) against S. mutans. Inhibition of biofilm formation, pH drop and proton permeability tests were conducted with EELF, GA and EG, and also evaluated the expression of the GTF genes in biofilms. The compounds of dichloromethane fraction were identified by GC-MS. RESULTS: This is the first report of shikimic, pyroglutamic, malic and protocatechuic acids identified in L. ferrea. EELF, GA and EG showed MIC at 250 µg/mL, and MBC at 1000 µg/mL by EELF. EELF biofilms showed reduced dry weight and acidogenicity of S. mutans in biofilms. GA and EG reduced viable cells, glucans soluble in alkali, acidogenicity, aciduricity and downregulated expression of gtfB, gtfC and gtfD genes in biofilms. SEM images of GA and EG biofilms showed a reduction of biomass, exopolysaccharide and microcolonies of S. mutans. CONCLUSIONS: The ethanolic extract of fruit and seed of L. ferrea, gallic acid and ethyl gallate showed great antimicrobial activity and inhibition of adhesion, reduction of acidogenicity and aciduricity in S. mutans biofilms. The results obtained in vitro validate the use of this plant in ethnopharmacology, and open opportunities for the development of new oral anticariogenic agents, originated by plants that can inhibit pathogenic biofilm that leads to the development of caries.


Assuntos
Antibacterianos/farmacologia , Fabaceae , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Extratos Vegetais/farmacologia , Streptococcus mutans/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/prevenção & controle , Frutas , Ácido Gálico/análise , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/genética , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Sementes , Streptococcus mutans/genética , Streptococcus mutans/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...