Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Immunol ; 257: 109836, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37951516

RESUMO

BACKGROUND: COVID-19 causes consequences such as imbalance of the immune system and thrombotic events. During the infection process, NETs in excess induce a pro-inflammatory response and disseminated intravascular coagulation. We evaluated the role of enoxaparin as a potential inhibitor of NETs. METHODS: K18-hACE2 animals infected with the SARS-CoV-2 virus and a group of 23 individuals admitted to the hospital with COVID-19 treated with enoxaparin or without treatment and controls without the disease were included. RESULTS: Enoxaparin decreased the levels of NETs, reduced the signs of the disease and mitigated lung damage in the animals infected with SARS-CoV-2. These effects were partially associated with prevention of SARS-CoV-2 entry and NETs synthesis. Clinical data revealed that treatment with enoxaparin decreased the levels of inflammatory markers, the levels of NETs in isolated neutrophils and the organ dysfunction. CONCLUSION: This study provides evidence for the beneficial effects of enoxaparin in COVID-19 in addition to its anticoagulant role.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Animais , Neutrófilos , Enoxaparina/farmacologia , SARS-CoV-2
2.
Sci Rep ; 13(1): 13599, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604833

RESUMO

The TIGIT+FOXP3+Treg subset (TIGIT+Tregs) exerts robust suppressive activity on cellular immunity and predisposes septic individuals to opportunistic infection. We hypothesized that TIGIT+Tregs could play an important role in intensifying the COVID-19 severity and hampering the defense against nosocomial infections during hospitalization. Herein we aimed to verify the association between the levels of the TIGIT+Tregs with the mechanical ventilation requirement, fatal outcome, and bacteremia during hospitalization. TIGIT+Tregs were immunophenotyped by flow cytometry from the peripheral blood of 72 unvaccinated hospitalized COVID-19 patients at admission from May 29th to August 6th, 2020. The patients were stratified during hospitalization according to their mechanical ventilation requirement and fatal outcome. COVID-19 resulted in a high prevalence of the TIGIT+Tregs at admission, which progressively increased in patients with mechanical ventilation needs and fatal outcomes. The prevalence of TIGIT+Tregs positively correlated with poor pulmonary function and higher plasma levels of LDH, HMGB1, FGL2, and TNF. The non-survivors presented higher plasma levels of IL-33, HMGB1, FGL2, IL-10, IL-6, and 5.54 times more bacteremia than survivors. Conclusions: The expansion of the TIGIT+Tregs in COVID-19 patients was associated with inflammation, lung dysfunction, bacteremia, and fatal outcome.


Assuntos
Bacteriemia , COVID-19 , Infecção Hospitalar , Proteína HMGB1 , Humanos , Respiração Artificial , Linfócitos T Reguladores , Receptores Imunológicos , Fibrinogênio
3.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186819

RESUMO

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Assuntos
COVID-19 , Hiperglicemia , Humanos , COVID-19/complicações , SARS-CoV-2 , Gluconeogênese , Glicemia , Estudos Retrospectivos , Hepatócitos , Hiperglicemia/complicações , Glucose
4.
J Infect Dis ; 227(12): 1364-1375, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36763010

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers activation of the NLRP3 inflammasome, which promotes inflammation and aggravates severe COVID-19. Here, we report that SARS-CoV-2 induces upregulation and activation of human caspase-4/CASP4 (mouse caspase-11/CASP11), and this process contributes to NLRP3 activation. In vivo infections performed in transgenic hACE2 humanized mice, deficient or sufficient for Casp11, indicate that hACE2 Casp11-/- mice were protected from disease development, with the increased pulmonary parenchymal area, reduced clinical score of the disease, and reduced mortality. Assessing human samples from fatal cases of COVID-19, we found that CASP4 was expressed in patient lungs and correlated with the expression of inflammasome components and inflammatory mediators, including CASP1, IL1B, IL18, and IL6. Collectively, our data establish that CASP4/11 promotes NLRP3 activation and disease pathology, revealing a possible target for therapeutic interventions for COVID-19.


Assuntos
COVID-19 , Inflamassomos , Camundongos , Animais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Camundongos Transgênicos
5.
Clin Exp Rheumatol ; 41(7): 1473-1479, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36441653

RESUMO

OBJECTIVES: To quantify survivin and NETs in synovial fluid (SF) of patients with rheumatoid arthritis (RA) and osteoarthritis (OA), and to assess whether there is a correlation of the quantifications with the exclusion of OA diagnosis and the activity of RA. METHODS: We performed a cross-sectional, observational study, in which 32 patients with RA and 16 with OA were included. Clinical and laboratory data were obtained, in addition to routine analysis of SF and the measurement of SF survivin and NETs. RA activity was assessed by DAS28. RESULTS: Concentrations of survivin (median, 356.9 vs. 49.9 pg/mL; p=0.0006) and NETs (median, 100.7 vs. 49.7 ng/mL; p=0.004) were elevated in the SF of the RA group compared to those of the OA group. ROC curves showed the following values for measurements of survivin and NETs: AUC of 79% and 75% respectively, with sensitivity of 75% and specificity of 78% for both. There was no correlation between survivin and NETs values for both groups, but we found association between SF survivin and serum ACPA for RA patients. CONCLUSIONS: We found an independent association between levels of survivin and NETs in SF with the exclusion of OA diagnosis, but not with RA activity. There was no correlation between survivin and NETs in SF, because we suppose that resistance to apoptosis, mediated by survivin, and NETosis are independently related to the pathophysiology of RA.


Assuntos
Artrite Reumatoide , Osteoartrite , Líquido Sinovial , Humanos , Biomarcadores , Estudos Transversais , Survivina
6.
Sci Adv ; 8(37): eabo5400, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103544

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Inflamassomos , Animais , Humanos , Agentes de Imunomodulação , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , SARS-CoV-2
7.
Crit Care ; 26(1): 206, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799268

RESUMO

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Assuntos
Tratamento Farmacológico da COVID-19 , Armadilhas Extracelulares , Animais , Dissulfiram/metabolismo , Armadilhas Extracelulares/metabolismo , Camundongos , Neutrófilos/metabolismo , SARS-CoV-2
8.
Elife ; 112022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666101

RESUMO

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Anti-Inflamatórios/farmacologia , Apoptose , Humanos , Macrófagos/metabolismo , Fagocitose
9.
J Mol Cell Biol ; 14(4)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35451490

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Assuntos
COVID-19 , SARS-CoV-2 , Síndrome da Liberação de Citocina , Humanos , Leucócitos Mononucleares , Monócitos
11.
Vascul Pharmacol ; 142: 106946, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838735

RESUMO

BACKGROUND AND PURPOSE: Mitochondria play a central role in the host response to viral infection and immunity, being key to antiviral signaling and exacerbating inflammatory processes. Mitochondria and Toll-like receptor (TLR) have been suggested as potential targets in SARS-CoV-2 infection. However, the involvement of TLR9 in SARS-Cov-2-induced endothelial dysfunction and potential contribution to cardiovascular complications in COVID-19 have not been demonstrated. This study determined whether infection of endothelial cells by SARS-CoV-2 affects mitochondrial function and induces mitochondrial DNA (mtDNA) release. We also questioned whether TLR9 signaling mediates the inflammatory responses induced by SARS-CoV-2 in endothelial cells. EXPERIMENTAL APPROACH: Human umbilical vein endothelial cells (HUVECs) were infected by SARS-CoV-2 and immunofluorescence was used to confirm the infection. Mitochondrial function was analyzed by specific probes and mtDNA levels by real-time polymerase chain reaction (RT-PCR). Inflammatory markers were measured by ELISA, protein expression by western blot, intracellular calcium (Ca2+) by FLUOR-4, and vascular reactivity with a myography. KEY RESULTS: SARS-CoV-2 infected HUVECs, which express ACE2 and TMPRSS2 proteins, and promoted mitochondrial dysfunction, i.e. it increased mitochondria-derived superoxide anion, mitochondrial membrane potential, and mtDNA release, leading to activation of TLR9 and NF-kB, and release of cytokines. SARS-CoV-2 also decreased nitric oxide synthase (eNOS) expression and inhibited Ca2+ responses in endothelial cells. TLR9 blockade reduced SARS-CoV-2-induced IL-6 release and prevented decreased eNOS expression. mtDNA increased vascular reactivity to endothelin-1 (ET-1) in arteries from wild type, but not TLR9 knockout mice. These events were recapitulated in serum samples from COVID-19 patients, that exhibited increased levels of mtDNA compared to sex- and age-matched healthy subjects and patients with comorbidities. CONCLUSION AND APPLICATIONS: SARS-CoV-2 infection impairs mitochondrial function and activates TLR9 signaling in endothelial cells. TLR9 triggers inflammatory responses that lead to endothelial cell dysfunction, potentially contributing to the severity of symptoms in COVID-19. Targeting mitochondrial metabolic pathways may help to define novel therapeutic strategies for COVID-19.


Assuntos
COVID-19 , DNA Mitocondrial , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células Endoteliais/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , SARS-CoV-2 , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
12.
Life Sci ; 276: 119376, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33781826

RESUMO

The severe forms and worsened outcomes of COVID-19 (coronavirus disease 19) are closely associated with hypertension and cardiovascular disease. Endothelial cells express Angiotensin-Converting Enzyme 2 (ACE2), which is the entrance door for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmarks of severe illness caused by SARS-CoV-2 infection are increased levels of IL-6, C-reactive protein, D-dimer, ferritin, neutrophilia and lymphopenia, pulmonary intravascular coagulopathy and microthrombi of alveolar capillaries. The endothelial glycocalyx, a proteoglycan- and glycoprotein-rich layer covering the luminal side of endothelial cells, contributes to vascular homeostasis. It regulates vascular tonus and permeability, prevents thrombosis, and modulates leukocyte adhesion and inflammatory response. We hypothesized that cytokine production and reactive oxygen species (ROS) generation associated with COVID-19 leads to glycocalyx degradation. A cohort of 20 hospitalized patients with a confirmed COVID-19 diagnosis and healthy subjects were enrolled in this study. Mechanisms associated with glycocalyx degradation in COVID-19 were investigated. Increased plasma concentrations of IL-6 and IL1-ß, as well as increased lipid peroxidation and glycocalyx components were detected in plasma from COVID-19 patients compared to plasma from healthy subjects. Plasma from COVID-19 patients induced glycocalyx shedding in cultured human umbilical vein endothelial cells (HUVECs) and disrupted redox balance. Treatment of HUVECs with low molecular weight heparin inhibited the glycocalyx perturbation. In conclusion, plasma from COVID-19 patients promotes glycocalyx shedding and redox imbalance in endothelial cells, and heparin treatment potentially inhibits glycocalyx disruption.


Assuntos
COVID-19/sangue , COVID-19/patologia , Glicocálix/patologia , Heparina/farmacologia , Idoso , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/virologia , COVID-19/metabolismo , Teste para COVID-19 , Estudos de Casos e Controles , Adesão Celular/fisiologia , Endotélio Vascular/metabolismo , Feminino , Glicocálix/metabolismo , Glicocálix/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Oxirredução , SARS-CoV-2 , Trombose/metabolismo
13.
RMD Open ; 7(1)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33542047

RESUMO

OBJECTIVE: To evaluate whether the addition of colchicine to standard treatment for COVID-19 results in better outcomes. DESIGN: We present the results of a randomised, double-blinded, placebo-controlled clinical trial of colchicine for the treatment of moderate to severe COVID-19, with 75 patients allocated 1:1 from 11 April to 30 August 2020. Colchicine regimen was 0.5 mg thrice daily for 5 days, then 0.5 mg twice daily for 5 days. The primary endpoints were the need for supplemental oxygen, time of hospitalisation, need for admission and length of stay in intensive care unit and death rate. RESULTS: Seventy-two patients (36 for placebo and 36 for colchicine) completed the study. Median (and IQR) time of need for supplemental oxygen was 4.0 (2.0-6.0) days for the colchicine group and 6.5 (4.0-9.0) days for the placebo group (p<0.001). Median (IQR) time of hospitalisation was 7.0 (5.0-9.0) days for the colchicine group and 9.0 (7.0-12.0) days for the placebo group (p=0.003). At day 2, 67% versus 86% of patients maintained the need for supplemental oxygen, while at day 7, the values were 9% versus 42%, in the colchicine and the placebo groups, respectively (log rank; p=0.001). Two patients died, both in placebo group. Diarrhoea was more frequent in the colchicine group (p=0.26). CONCLUSION: Colchicine reduced the length of both, supplemental oxygen therapy and hospitalisation. The drug was safe and well tolerated. Once death was an uncommon event, it is not possible to ensure that colchicine reduced mortality of COVID-19. TRIAL REGISTRATION NUMBER: RBR-8jyhxh.


Assuntos
Tratamento Farmacológico da COVID-19 , Colchicina/administração & dosagem , Tempo de Internação , Oxigenoterapia , SARS-CoV-2/genética , Índice de Gravidade de Doença , Adulto , Idoso , COVID-19/mortalidade , COVID-19/virologia , Colchicina/efeitos adversos , Diarreia/induzido quimicamente , Método Duplo-Cego , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Resultado do Tratamento
14.
J Exp Med ; 218(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33231615

RESUMO

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Assuntos
COVID-19/patologia , COVID-19/virologia , Inflamassomos/metabolismo , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Apoptose , Comorbidade , Citocinas/biossíntese , Humanos , Pulmão/patologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mudanças Depois da Morte , Resultado do Tratamento
15.
bioRxiv ; 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34013264

RESUMO

Although SARS-CoV-2 severe infection is associated with a hyperinflammatory state, lymphopenia is an immunological hallmark, and correlates with poor prognosis in COVID-19. However, it remains unknown if circulating human lymphocytes and monocytes are susceptible to SARS-CoV-2 infection. In this study, SARS-CoV-2 infection of human peripheral blood mononuclear cells (PBMCs) was investigated both in vitro and in vivo . We found that in vitro infection of whole PBMCs from healthy donors was productive of virus progeny. Results revealed that monocytes, as well as B and T lymphocytes, are susceptible to SARS-CoV-2 active infection and viral replication was indicated by detection of double-stranded RNA. Moreover, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from COVID-19 patients, and less frequently in CD4 + T lymphocytes. The rates of SARS-CoV-2-infected monocytes in PBMCs from COVID-19 patients increased over time from symptom onset. Additionally, SARS-CoV-2-positive monocytes and B and CD4+T lymphocytes were detected by immunohistochemistry in post mortem lung tissue. SARS-CoV-2 infection of blood circulating leukocytes in COVID-19 patients may have important implications for disease pathogenesis, immune dysfunction, and virus spread within the host.

16.
J Immunol ; 202(6): 1807-1814, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718300

RESUMO

The purpose of this study was to investigate the role of pentraxin 3 (PTX3), a pivotal component of the innate immune system, in gout. Levels of PTX3 and IL-1ß in human samples were evaluated by ELISA. Development of murine gout was evaluated through the levels of cytokines (PTX3, CXCL1, and IL-1ß) and neutrophil recruitment into the joint cavity. Phagocytosis of monosodium urate (MSU) crystals and caspase-1 activation were determined by flow cytometer. Acute gout patients showed elevated concentration of PTX3 in plasma and synovial fluid as compared with healthy and osteoarthritic subjects. Moreover, there was a positive correlation between intra-articular PTX3 and IL-1ß levels. PTX3 was induced in the periarticular tissue of mice postinjection of MSU crystals. Importantly, Ptx3-deficient mice showed reduced inflammation in response to MSU crystal injection compared with wild-type mice, including reduction of neutrophil recruitment into the joint cavity and IL-1ß and CXCL1 production. Interestingly, addition of PTX3 in vitro enhanced MSU crystal phagocytosis by monocytes and resulted in higher production of IL-1ß by macrophages. This contribution of PTX3 to the phagocytosis of MSU crystals and consequent production of IL-1ß occurred through a mechanism mainly dependent on FcγRIII. Thus, our results suggest that PTX3 acts as a humoral pattern recognition molecule in gout facilitating MSU crystal phagocytosis and contributing to the pathogenesis of gouty arthritis.


Assuntos
Artrite Gotosa/imunologia , Proteína C-Reativa/imunologia , Interleucina-1beta/imunologia , Fagocitose/imunologia , Componente Amiloide P Sérico/imunologia , Ácido Úrico/imunologia , Animais , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Proteína C-Reativa/metabolismo , Humanos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Componente Amiloide P Sérico/metabolismo , Ácido Úrico/metabolismo
17.
Arthritis Res Ther ; 20(1): 119, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884199

RESUMO

BACKGROUND: Epidemiologic studies have highlighted the association of environmental factors with the development and progression of autoimmune and chronic inflammatory diseases. Among the environmental factors, smoking has been associated with increased susceptibility and poor prognosis in rheumatoid arthritis (RA). However, the immune and molecular mechanism of smoking-induced arthritis aggravation remains unclear. The transcription factor aryl hydrocarbon receptor (AHR) regulates the generation of Th17 cells, CD4 T cells linked the development of autoimmune diseases. AHR is activated by organic compounds including polycyclic aromatic hydrocarbons (PAHs), which are environmental pollutants that are also present in cigarette smoke. In this study, we investigated the role of AHR activation in the aggravation of experiment arthritis induced by exposure to cigarette smoke. METHODS: Mice were exposed to cigarette smoke during the developmental phase of antigen-induced arthritis and collagen-induced arthritis to evaluate the effects of smoking on disease development. Aggravation of articular inflammation was assessed by measuring neutrophil migration to the joints, increase in articular hyperalgesia and changes in the frequencies of Th17 cells. In vitro studies were performed to evaluate the direct effects of cigarette smoke and PAH on Th17 differentiation. We also used mice genetically deficient for AHR (Ahr KO) and IL-17Ra (Il17ra KO) to determine the in vivo mechanism of smoking-induced arthritis aggravation. RESULTS: We found that smoking induces arthritis aggravation and increase in the frequencies of Th17 cells. The absence of IL-17 signaling (Il17ra KO) conferred protection to smoking-induced arthritis aggravation. Moreover, in vitro experiments showed that cigarette smoke can directly increase Th17 differentiation of T cells by inducing AHR activation. Indeed, Ahr KO mice were protected from cigarette smoke-induced arthritis aggravation and did not display increase in TH17 frequencies, suggesting that AHR activation is an important mechanism for cigarette smoke effects on arthritis. Finally, we demonstrate that PAHs are also able to induce arthritis aggravation. CONCLUSIONS: Our data demonstrate that the disease-exacerbating effects of cigarette smoking are AHR dependent and environmental pollutants with AHR agonist activity can induce arthritis aggravation by directly enhancing Th17 cell development.


Assuntos
Artrite Experimental/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fumaça/efeitos adversos , Células Th17/metabolismo , Animais , Artrite Experimental/etiologia , Artrite Experimental/genética , Compostos Azo/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Pirazóis/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Nicotiana/química
18.
Rheumatol Int ; 38(6): 1043-1052, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29464314

RESUMO

We examined the functional activity of peripheral blood neutrophils and the complement system activation status in patients with rheumatoid arthritis (RA) undergoing infliximab/methotrexate combined therapy. We studied female RA patients under treatment with infliximab (3-5 mg/kg) and methotrexate (15-25 mg/week) who presented inactive (i-RA; n = 34, DAS-28 ≤ 2.6) or at least moderately active disease (a-RA; n = 29, DAS-28 > 3.2), and age-matched healthy women (n = 38). We measured the levels of reactive oxygen species (ROS) generation (chemiluminescence assay) and membrane expression of FcγRIIa/CD32, FcγRIIIb/CD16, CR1/CD35, and CR3/CD11b receptors (ELISA assay) in neutrophils. We also determined the hemolytic activity of the alternative and classical pathways of the complement system (spectrophotometry), serum levels of C5a and Bb (ELISA assay), and serum chemotactic activity (Boyden chamber). Compared with the control group, i-RA and a-RA patients exhibited: (1) increased neutrophil ROS production and membrane expression of FcγRIIa/CD32, FcγRIIIb/CD16, and CR1/CD35, indicating neutrophil activation; and (2) increased serum chemotactic activity and decreased activity of the alternative complement pathway, indicating systemic complement system activation. The levels of C-reactive protein in a-RA patients were augmented, compared with i-RA patients. Although infliximab/methotrexate combined therapy induced disease remission according to the DAS-28 criteria, both i-RA and a-RA patients still exhibited significant levels of systemic activation of neutrophils and the complement system.


Assuntos
Artrite Reumatoide/imunologia , Ativação do Complemento , Neutrófilos/imunologia , Adulto , Anticorpos Monoclonais/uso terapêutico , Complexo Antígeno-Anticorpo/biossíntese , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Brasil , Feminino , Humanos , Infliximab/uso terapêutico , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo
19.
Arthritis Rheumatol ; 67(7): 1751-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25779331

RESUMO

OBJECTIVE: Infiltration of neutrophils into the joints plays an important role in bone erosion and articular destruction in rheumatoid arthritis (RA). Neutrophil trafficking during inflammation is a process that involves activation of chemotactic receptors. Recent findings suggest that changes in chemotactic receptor patterns could occur in neutrophils under certain inflammatory conditions. The aim of this study was to evaluate the gain of responsiveness of neutrophils to CCL2 in RA patients and to assess the role of CCL2 in driving neutrophil infiltration into the joints. METHODS: Neutrophils were purified from the peripheral blood of patients with RA or from mice with antigen-induced arthritis (AIA). Expression of CCR2 was evaluated using polymerase chain reaction, flow cytometry, and immunofluorescence analyses. In vitro chemotaxis to CCL2 was assayed to evaluate the functional significance of de novo CCR2 expression. The murine AIA model was used to evaluate the in vivo role of CCR2 in neutrophil infiltration into the joints. RESULTS: High CCR2 expression and responsiveness to CCL2 were observed in neutrophils from the blood of patients with early RA and in neutrophils from the blood and bone marrow of mice with AIA. Genetic deficiency or pharmacologic inhibition of CCR2 protected against the infiltration of neutrophils into the joints. This protection was not associated with an impairment of the neutrophil chemotactic ability or CXC chemokine production in the joints. Moreover, adoptive transfer of wild-type mouse neutrophils to CCR2-deficient mice restored neutrophil infiltration and the articular mechanical hyperalgesia associated with joint inflammation. CONCLUSION: These findings suggest that CCR2 is directly involved in the detrimental infiltration of neutrophils into the joints in patients with RA, showing a new inflammatory role of CCR2 during RA flares or active disease.


Assuntos
Artrite Reumatoide/patologia , Artrite Reumatoide/fisiopatologia , Movimento Celular/fisiologia , Articulações/patologia , Neutrófilos/patologia , Receptores CCR2/metabolismo , Animais , Artrite Reumatoide/metabolismo , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/farmacologia , Quimiotaxia/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Técnicas In Vitro , Articulações/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/fisiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores CCR2/deficiência , Receptores CCR2/genética , Índice de Gravidade de Doença
20.
Rheumatology (Oxford) ; 53(12): 2182-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24942492

RESUMO

OBJECTIVE: Brain-derived neurotrophic factor (BDNF) is associated with the pathogenesis of several neuropsychiatric (NP) diseases, but there are few studies involving SLE. The aim of this study was to investigate whether plasma BDNF levels are associated with disease activity in SLE patients with severe NPSLE and non-NPSLE manifestations. METHODS: We assessed 131 SLE patients and 24 randomly selected healthy individuals. SLE patients were evaluated in a cross-sectional study allocated according to the presence or not of NP manifestations and disease activity: (i) active NPSLE (n = 40), (ii) inactive NPSLE (n = 26), (iii) active SLE (n = 29) and (iv) inactive SLE (n = 36). In addition, NPSLE patients (n = 40) were evaluated before and after treatment. Disease activity was assessed according to the SLEDAI score. The plasma BDNF was measured by ELISA. RESULTS: BDNF levels were increased in inactive NPSLE when compared with active SLE and controls (P < 0.0001). We observed similar findings in inactive SLE when compared with active SLE (P < 0.0001). In addition, we found an inverse correlation between plasma BDNF levels and the SLEDAI (r = -0.54, P < 0.0001) and a positive correlation with complement levels. We also observed an increase in BDNF levels in parallel with the improvement in NP symptoms. CONCLUSION: Plasma BDNF level is increased in SLE patients and this increase is independent of the occurrence of NP manifestations. In addition, plasma BDNF levels increased with control of SLE activity, which points to the potential use of BDNF as a biomarker of response to treatment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Vasculite Associada ao Lúpus do Sistema Nervoso Central/sangue , Adolescente , Adulto , Biomarcadores/sangue , Fármacos do Sistema Nervoso Central/uso terapêutico , Estudos Transversais , Feminino , Humanos , Imunossupressores/uso terapêutico , Estudos Longitudinais , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...