Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Zoo Wildl Med ; 54(2): 252-261, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37428687

RESUMO

The Wildlife Conservation Society (WCS) has housed fennec foxes (Vulpes zerda) at its facilities since the early 1900s and currently has one of the largest populations managed by the fennec fox Species Survival Plan. Of the 83 foxes held by WCS institutions between 1980 and 2019, 52 medical records and 48 postmortem reports were available for review. Common causes of morbidity included trauma and dermatologic disease, especially atopic dermatitis. Average age at death for animals surviving past 10 wk was 9.76 yr. Common causes of death or euthanasia were neoplasia (15/48, 31%) and infectious disease (14/48, 29%), with neoplastic processes incidentally identified in an additional seven animals. Significant antemortem cardiac changes were identified in 22 animals. Hepatocellular carcinoma (HCC) was diagnosed in nine animals, consistent with previous documentation of HCC as one of the most common neoplasms in this species. Four animals were suspected to have succumbed to vaccine-induced canine distemper virus after receiving a modified live vaccine. No canine distemper infections have been documented after 1981 in this population and since the use of a canarypox-vectored recombinant vaccine. Recommendations for management of this species include routine screening for hepatic neoplasia in adult animals, regular cardiac evaluations including electrocardiogram, echocardiogram, and dermatologic examination as described by the current consensus statement on canine atopic dermatitis. This descriptive morbidity and mortality report is the first for the fennec fox.


Assuntos
Carcinoma Hepatocelular , Dermatite Atópica , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Neoplasias Hepáticas , Animais , Cães , Carcinoma Hepatocelular/veterinária , Raposas , Neoplasias Hepáticas/veterinária , Estudos Retrospectivos , Dermatite Atópica/veterinária , Animais Selvagens , Morbidade , Vacinas Atenuadas
2.
Front Genet ; 14: 1297444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288162

RESUMO

Ovine footrot is an infectious disease with important contributions from Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is characterized by separation of the hoof from underlying tissue, and this causes severe lameness that negatively impacts animal wellbeing, growth, and profitability. Large economic losses result from lost production as well as treatment costs, and improved genetic tools to address footrot are a valuable long-term goal. Prior genetic studies had examined European wool sheep, but hair sheep breeds such as Katahdin and Blackbelly have been reported to have increased resistance to footrot, as well as to intestinal parasites. Thus, footrot condition scores were collected from 251 U.S. sheep including Katahdin, Blackbelly, and European-influenced crossbred sheep with direct and imputed genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density. Genome-wide association was performed with a mixed model accounting for farm and principal components derived from animal genotypes, as well as a random term for the genomic relationship matrix. We identified three genome-wide significant associations, including SNPs in or near GBP6 and TCHH. We also identified 33 additional associated SNPs with genome-wide suggestive evidence, including a cluster of 6 SNPs in a peak near the genome-wide significance threshold located near the glutamine transporter gene SLC38A1. These findings suggest genetic susceptibility to footrot may be influenced by genes involved in divergent biological processes such as immune responses, nutrient availability, and hoof growth and integrity. This is the first genome-wide study to investigate susceptibility to footrot by including hair sheep and also the first study of any kind to identify multiple genome-wide significant associations with ovine footrot. These results provide a foundation for developing genetic tests for marker-assisted selection to improve resistance to ovine footrot once additional steps like fine mapping and validation are complete.

3.
PLoS One ; 17(5): e0266748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35522671

RESUMO

Monocytes are a core component of the immune system that arise from bone marrow and differentiate into cells responsible for phagocytosis and antigen presentation. Their derivatives are often responsible for the initiation of the adaptive immune response. Monocytes and macrophages are central in both controlling and propagating infectious diseases such as infection by Coxiella burnetii and small ruminant lentivirus in sheep. Genotypes from 513 Rambouillet, Polypay, and Columbia sheep (Ovis aries) were generated using the Ovine SNP50 BeadChip. Of these sheep, 222 animals were subsequently genotyped with the Ovine Infinium® HD SNP BeadChip to increase SNP coverage. Data from the 222 HD genotyped sheep were combined with the data from an additional 258 unique sheep to form a 480-sheep reference panel; this panel was used to impute the low-density genotypes to the HD genotyping density. Then, a genome-wide association analysis was conducted to identify loci associated with absolute monocyte counts from blood. The analysis used a single-locus mixed linear model implementing EMMAX with age and ten principal components as fixed effects. Two genome-wide significant peaks (p < 5x10-7) were identified on chromosomes 9 and 1, and ten genome-wide suggestive peaks (p < 1x10-5) were identified on chromosomes 1, 2, 3, 4, 9, 10, 15, and 16. The identified loci were within or near genes including KCNK9, involved into cytokine production, LY6D, a member of a superfamily of genes, some of which subset monocyte lineages, and HMGN1, which encodes a chromatin regulator associated with myeloid cell differentiation. Further investigation of these loci is being conducted to understand their contributions to monocyte counts. Investigating the genetic basis of monocyte lineages and numbers may in turn provide information about pathogens of veterinary importance and elucidate fundamental immunology.


Assuntos
Estudo de Associação Genômica Ampla , Carneiro Doméstico , Animais , Genoma , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Monócitos , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Carneiro Doméstico/genética
4.
Genetics ; 217(3)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789347

RESUMO

The gram-negative bacterium Coxiella burnetii is the causative agent of Query (Q) fever in humans and coxiellosis in livestock. Host genetics are associated with C. burnetii pathogenesis both in humans and animals; however, it remains unknown if specific genes are associated with severity of infection. We employed the Drosophila Genetics Reference Panel to perform a genome-wide association study to identify host genetic variants that affect host survival to C. burnetii infection. The genome-wide association study identified 64 unique variants (P < 10-5) associated with 25 candidate genes. We examined the role each candidate gene contributes to host survival during C. burnetii infection using flies carrying a null mutation or RNAi knockdown of each candidate. We validated 15 of the 25 candidate genes using at least one method. This is the first report establishing involvement of many of these genes or their homologs with C. burnetii susceptibility in any system. Among the validated genes, FER and tara play roles in the JAK/STAT, JNK, and decapentaplegic/TGF-ß signaling pathways which are components of known innate immune responses to C. burnetii infection. CG42673 and DIP-ε play roles in bacterial infection and synaptic signaling but have no previous association with C. burnetii pathogenesis. Furthermore, since the mammalian ortholog of CG13404 (PLGRKT) is an important regulator of macrophage function, CG13404 could play a role in host susceptibility to C. burnetii through hemocyte regulation. These insights provide a foundation for further investigation regarding the genetics of C. burnetii susceptibility across a wide variety of hosts.


Assuntos
Resistência à Doença , Variação Genética , Febre Q/genética , Locos de Características Quantitativas , Animais , Proteínas de Ciclo Celular/genética , Coxiella burnetii/patogenicidade , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas do Olho/genética , Patrimônio Genético , Febre Q/microbiologia
5.
Vet Pathol ; 57(6): 821-824, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783503

RESUMO

A 6-year-old, spayed female Labrador/Weimaraner cross-breed dog that had previously lived in Arizona presented in Montana for an annual examination with an incidentally enlarged popliteal lymph node, which was subsequently biopsied. Histologically, the lymph node was expanded by eosinophil-rich granulomas with both extracellular and intrahistiocytic green algae. These algae had intracytoplasmic, birefringent, and refractile granules; readily formed 2 to 3 mm green colonies on Columbia blood agar medium; and ultrastructurally had a multilayered cell wall and intracytoplasmic chloroplasts. Amplified product from the internal transcribed spacer and D1/D2 regions of the 28S ribosomal RNA gene had high sequence identity to Scenedesmus sp. Despite similar infection in the retropharyngeal lymph node 1 year later, the animal remained otherwise healthy with no clinical signs. To the authors' knowledge, this is the first case of Scenedesmus species infection in a dog and is a differential diagnosis for Coccidioides immitis.


Assuntos
Doenças do Cão , Linfadenite , Scenedesmus , Animais , Sequência de Bases , Doenças do Cão/microbiologia , Cães , Feminino , Linfadenite/veterinária , Montana , Melhoramento Vegetal , Scenedesmus/genética
6.
PLoS One ; 12(11): e0188054, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29141023

RESUMO

Coxiella burnetii is a globally distributed zoonotic bacterial pathogen that causes abortions in ruminant livestock. In humans, an influenza-like illness results with the potential for hospitalization, chronic infection, abortion, and fatal endocarditis. Ruminant livestock, particularly small ruminants, are hypothesized to be the primary transmission source to humans. A recent Netherlands outbreak from 2007-2010 traced to dairy goats resulted in over 4,100 human cases with estimated costs of more than 300 million euros. Smaller human Q fever outbreaks of small ruminant origin have occurred in the United States, and characterizing shedding is important to understand the risk of future outbreaks. In this study, we assessed bacterial shedding and seroprevalence in 100 sheep from an Idaho location associated with a 1984 human Q fever outbreak. We observed 5% seropositivity, which was not significantly different from the national average of 2.7% for the U.S. (P>0.05). Furthermore, C. burnetii was not detected by quantitative PCR from placentas, vaginal swabs, or fecal samples. Specifically, a three-target quantitative PCR of placenta identified 0.0% shedding (exact 95% confidence interval: 0.0%-2.9%). While presence of seropositive individuals demonstrates some historical C. burnetii exposure, the placental sample confidence interval suggests 2016 shedding events were rare or absent. The location maintained the flock with little or no depopulation in 1984 and without C. burnetii vaccination during or since 1984. It is not clear how a zero-shedding rate was achieved in these sheep beyond natural immunity, and more work is required to discover and assess possible factors that may contribute towards achieving zero-shedding status. We provide the first U.S. sheep placental C. burnetii shedding update in over 60 years and demonstrate potential for C. burnetii shedding to reach undetectable levels after an outbreak event even in the absence of targeted interventions, such as vaccination.


Assuntos
Coxiella burnetii/isolamento & purificação , Surtos de Doenças , Fezes/virologia , Placenta/virologia , Febre Q/epidemiologia , Carneiro Doméstico , Vagina/virologia , Animais , Coxiella burnetii/genética , DNA Viral/isolamento & purificação , Feminino , Humanos , Idaho/epidemiologia , Gravidez , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...