Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 30(5): 157, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698260

RESUMO

CONTEXT: The advancement in the development of second-generation drugs in the field of antihistamines represents a significant milestone in the management of allergic diseases, targeting the effects of histamine. The efficacy of bilastine in treating allergic disorders has sparked interest in investigating its polymorphism, a crucial property that impacts quality, safety, and effectiveness as per regulatory guidelines. This study examines the polymorphism of bilastine, focusing on two crystalline forms labeled as Form I and Form II. Utilizing advanced analytical techniques, the research explores the structural characteristics and molecular interactions within these forms. Geometric parameters, such as bond lengths, bond angles, and torsion angles, are examined to comprehend molecular conformations and crystal packing arrangements. Hydrogen bonding, covalent bonds, and van der Waals forces contribute to the unique supramolecular arrangements in these forms. This study provides a significant contribution to understanding bilastine's polymorphism, offering critical insights to researchers and regulatory bodies to ensure the quality, efficacy, and safety of antihistamine products. METHODS: The molecular conformation of two bilastine forms was obtained through DFT with the exchange-correlation functional M06-2X and the 6-311 + + G(d,p) basis set, and the results were compared with the experimental X-ray. The atomic coordinates were obtained directly from the crystalline structures, and charge transfer was also investigated using frontier molecular orbitals (HOMO and LUMO), and MEP map in order to evaluate the energies associated with charge transfers and regions of high electron affinity. The geometric and topological parameters and intermolecular interactions in the crystals were analyzed using Hirshfeld Surface.

2.
J Mol Model ; 29(6): 197, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268806

RESUMO

INTRODUCTION: Enalapril maleate is an antihypertensive ethyl ester pro-drug with two crystalline forms. A network of hydrogen bonds in both polymorphs plays an important role on solid-state stability, charge transfer process and degradation reactions (when exposed to high humidity, temperature and/or pH changes). COMPUTATIONAL PROCEDURES: Supramolecular arrangement was proposed by Hirshfeld surface using the CrystalExplorer17 software and quantum theory of atoms in molecules. The electronic structure properties were calculated using the functional hybrid M06-2X with 6-311++G** base function employing diffuse and polarization functions to improve the description of hydrogen atoms on intermolecular interactions. Also, the H+ charge transfer between enalapril and maleate molecules was performed using Car-Parrinello molecular dynamics with the Verlet algorithm. In both simulations, the temperature of the ionic system was maintained around 300 K using the Nosé-Hoover thermostat and the electronic system evolved without the use of the thermostat. RESULTS: This work evaluates the effect of maleate on the structural stability of enalapril maleate solid state. The electronic structural analysis points out a partially covalent character for N1-H∙∙∙O7 interaction; and the molecular dynamic showed a decentralized hydrogen on maleate driving a decomposition by charge transfer process while a centered hydrogen driving the stabilization. The charge transfer process and the mobility of the proton (H+) between enalapril and maleate molecules was demonstrated using supramolecular modeling analyses and molecular dynamics calculations.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Enalapril , Enalapril/química , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Dinâmica Molecular , Estabilidade de Medicamentos , Maleatos , Hidrogênio
3.
J Mol Model ; 28(10): 338, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181566

RESUMO

Active pharmaceutical ingredients are formulated as the salt form, aiming to modulate their physicochemical properties. In this regard, the optimization and choice of the salt former have a strong influence on toxicity, therapeutic efficiency, and bioavailability. Sulfamethoxazole (SMZ) salts with Na+, Cl-, and Br- counterions influence in the supramolecular arrangement as well as in their thermodynamic and kinetic parameters. Herein, we analyzed the interactions of the Na+, Cl-, and Br- counterions on the supramolecular arrangement of the sulfamethoxazole salts by Hirshfeld surfaces, fingerprint plots, and theoretical methods-quantum theory of atoms in molecules and natural bond orbitals. Moreover, we evaluated their electronic structure by density functional theory using calculation of the frontier molecular orbitals. Molecular electrostatic potential maps were also obtained to predict the interactions of the counterions along crystalline arrangements. We observed that the structures of [SMZ]+ and [SMZ]- ions differ slightly from the SMZ. The chemical reactivity indices show that the SMZ is kinetically more stable than its respective ions, while its anion is more polarizable, and its cation has a higher global electrophilicity index. The molecular electrostatic potential maps show high charge density in the sulfonyl group (nucleophilic region) and the heterocyclic amino group (electrophilic region). Although the molecular skeleton is identical among the three SMZ species and the presence of different counterions in the formation of the crystalline structure of the salts results in supramolecular arrangements with different patterns of intermolecular interactions, despite being very similar in terms of intensities.


Assuntos
Sais , Sulfametoxazol , Íons/química , Preparações Farmacêuticas , Eletricidade Estática
4.
J Mol Model ; 27(2): 65, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33532877

RESUMO

This work describes a comparative molecular structure of two hydroxychlorochalcones with an emphasis on their planarity. Hirshfeld surface analysis investigates the effect of ortho- and para-chlorine substitution on supramolecular arrangement and physical chemical properties. The molecular conformation of 2'-hydroxy-4',6'-dimethyl-2-chlorochalcone and 2'-hydroxy-4',6'-dimethyl-4-chlorochalcone chalcones was obtained through DFT with the exchange-correlation functional M06-2X and the 6-311++G(2d,2p) basis set, and the results were compared with the experimental X-ray data in order to get insights on the effect of ortho- and para-chlorine substitution. The charge transfer into entire main carbon chain was also investigated using frontier molecular orbitals (HOMO and LUMO), NBO, and MEP map in order to describe the comparative conformational stability due to the resonance effect produced by π electron displacements. Finally, the intermolecular observed interactions were analyzed by QTAIM, with the M06-2X/6-311G++(d,p) theory level.

5.
J Mol Model ; 26(9): 243, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816129

RESUMO

This work presents the synthesis of the chalcone (E)-3-(2,6-difluorophenyl)-1-(furan-2-yl)-prop-2-en-1-one molecule through the equimolar reaction between 1-(furan-2-yl)-ethenone and 2,6-difluorobenzaldehyde. The crystallographic characterization and the extensive theoretical study regarding electronic properties were obtained. The supramolecular arrangement was described by X-ray diffraction and Hirshfeld surfaces. Optimized geometrical structure was obtained by density functional theory, and the electronic study for differences between the solid and gas phases was carried out with M062-X at 6-311++G(2d,2p) basis set. Natural bond orbital, frontier molecular orbitals (HOMO-LUMO), and molecular electrostatic potential map were determined to elucidate the information related to the charge transfer in the molecule. The theoretical and experimental vibrational spectra were plotted, which included the IR intensities, the calculated and experimental vibrational frequencies, and the assigned vibrational modes for the main groups of DTP.

6.
J Mol Model ; 25(7): 208, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263963

RESUMO

Chalcones have been reported to present biological activities that are potentialized when a sulfonamide group is attached. A comprehensive structural study was performed for arylsulfonamide chalcone N-(2-(3-4-methoxyphenyl-propanoyl)-phenyl)-benzene-sulfonamide in order to describe its supramolecular arrangement and its physicochemical properties. The molecular packing arrangement was described by X-ray diffraction and Hirshfeld surfaces (HS). Theoretical calculations were performed using density functional theory (DFT), molecular electrostatic potential (MEP) mapping, ab initio Car-Parrinelo molecular dynamics (CPMD) and the quantum theory of atoms in molecules (QTAIM). The solid-state arrangement is stabilized by C- H⋯O and C-H⋯π interactions observed on HS and MEP map. The topological analysis was evaluated by QTAIM.

7.
J Mol Model ; 23(3): 97, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28251413

RESUMO

Chalcones are an important class of natural compounds that exhibit numerous biological activities. In this paper, we report the synthesis and characterization of new fluorinated chalcone (FCH). The molecular geometry was determined by means of single crystal X-ray diffraction, and density functional theory (DFT) at B3LYP, M06-2X functionals and MP2 method, with the 6-311++G(d,p) basis set, was applied to optimize the ground state geometry and to study the molecular conformational stability. The molecular electrostatic potential (MEP) was also investigated at the same level of theory in order to identify and quantify the possible reactive sites. The FCH crystallizes in the centrossymmetric space group [Formula: see text] with two independent conformers (α and ß) in the asymmetric unit cell. The α conformer is arranged in planar layer whereas the ß creates a layer of non-classical dimer along c axis, that differ from α in about 11° in the orientation of phenyl groups. The stabilization of the ß conformer is achieved by C-H···π arrangement. The small energy difference between the conformers (0.086 kcal mol-1) and the absence of activation energy indicates that the conversion between them can takes place at room temperature and the ß isomer is stable only in solid state. The FCH most electrophilic site occurs on the oxygen atom from the carboxyl group with absolute MEP value of about -52 kcal mol-1 whereas the MEP value calculated for F site is about -23 kcal mol-1.

8.
PLoS One ; 11(6): e0158029, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27355378

RESUMO

A comprehensive investigation of anhydrous form of 3,4,5-Triacetoxybenzoic acid (TABA) is reported. Single crystal X-ray diffraction, Thermal analysis, Fourier Transform Infrared spectroscopy (FTIR) and DFT calculations were applied for TABA characterization. This anhydrous phase crystallizes in the triclinic [Formula: see text] space group (Z' = 1) and its packing shows a supramolecular motif in a classical [Formula: see text] ring formed by acid-acid groups association. The phase stability is accounted in terms of supramolecular architecture and its thermal behaviour. Conformation search at B3LYP/6-311++G(2d,p) level of theory shows the existence of three stable conformers and the most stable conformation was found experimentally. The reactivity of TABA was investigated using the molecular orbital theory and molecular electrostatic potential. The calculation results were used to simulate the infrared spectrum. There is a good agreement between calculated and experimental IR spectrum, which allowed the assignment of the normal vibrational modes.


Assuntos
Acetatos/química , Ácido Gálico/análogos & derivados , Hidroxibenzoatos/química , Cristalografia por Raios X , Dimerização , Ácido Gálico/química , Raios Infravermelhos , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Temperatura , Termogravimetria , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...