Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 187(Suppl 1): 25-31, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34967400

RESUMO

INTRODUCTION: Providing patient-specific clinical care is an expanding focus for medical professionals and researchers, more commonly referred to as personalized or precision medicine. The goal of using a patient-centric approach is to provide safer care while also increasing the probability of therapeutic success through careful consideration of the influence of certain extrinsic and intrinsic human factors in developing the patient care plan. Of increasing influence on patient care is the phenotype and genotype information gathered from employing various next-generation sequencing methods. Guided by and partnered with our civilian colleagues, clinical components within the DoD are embracing and advancing genomic medicine in many facets-from the bench to the bedside-and in many therapeutic areas, from Psychiatry to Oncology. In this PubMed-based review, we describe published clinical research and interventions within the DoD using genome-informed data and emphasize precision medicine efforts in earlier stages of development with the potential to revolutionize the approach to therapeutics. MATERIALS AND METHODS: The new PubMed database was searched for articles published between 2015 and 2020 with the following key search terms: precision medicine, genomic, pharmacogenetic, pharmacogenomic, US military, and Department of Defense. RESULTS: Eighty-one articles were retrieved in our initial search. After screening the abstracts for studies that only involved direct testing of (or clinical interaction with) active duty, Reserve, National Guard, or civilian personnel working within the DoD and excluding any epidemiological or microbial isolation studies, seven were included in this review. CONCLUSION: There are several programs and studies within the DoD, which investigate or use gene-based biomarkers or gene variants to deliver more precise clinical assessment and treatment. These genome-based precision medicine efforts aim to optimize the clinical care of DoD beneficiaries, particularly service members in the operational environment.


Assuntos
Militares , Medicina de Precisão , Humanos
2.
Mil Med ; 187(Suppl 1): 1-8, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34967404

RESUMO

Pharmacogenomics (PGx) plays a fundamental role in personalized medicine, providing an evidence-based treatment approach centered on the relationship between genomic variations and their effect on drug metabolism. Cytochrome P450 (CYP450) enzymes are responsible for the metabolism of most clinically prescribed drugs and a major source of variability in drug pharmacokinetics and pharmacodynamics. To assess the prevalence of PGx testing within the Military Health System (MHS), testing of specific CYP450 enzymes was evaluated. Data were retrospectively obtained from the Military Health System Management Analysis and Reporting Tool (M2) database. Patient demographics were identified for each test, along with TRICARE status, military treatment facility, clinic, and National Provider Identifier. A total of 929 patients received 1,833 PGx tests, predominantly composed of active duty/guard service members (N = 460; 49.5%), with highest testing rates in the army (51.5%). An even distribution in testing was observed among gender, with the highest rates in Caucasians (41.7%). Of the CYP enzymes assessed, CYP2C19 and CYP2D6 accounted for 87.8% of all PGx CYP testing. The majority of patients were tested in psychiatry clinics (N = 496; 53.4%) and primary care clinics (N = 233; 25.1%), accounting for 56.4% and 24.8% of all tests, respectively. Testing was found to be provider driven, suggesting a lack of a standardized approach to PGx and its application in patient care within the MHS. We initially recommend targeted education and revising testing labels to be more uniform and informative. Long-term recommendations include establishing pharmacy-driven protocols and point-of-care PGx testing to optimize patient outcomes.


Assuntos
Serviços de Saúde Militar , Farmacogenética , Citocromo P-450 CYP2D6/genética , Sistema Enzimático do Citocromo P-450/genética , Humanos , Estudos Retrospectivos
3.
Pharmacoepidemiol Drug Saf ; 29(12): 1605-1615, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32897626

RESUMO

PURPOSE: To explore patterns of antimuscarinic medication as a risk factor for type 2 diabetes mellitus (T2DM). METHODS: This is a retrospective cohort study of females 18 years or older within the Military Health System from 2006 to 2016. Administrative and claims data were used to select patients who initiated therapy with tolterodine, fesoterodine, oxybutynin, darifenacin, solifenacin, or trospium. Patients with no documented history of T2DM were followed for the occurrence of T2DM, the end of the study or loss of eligibility. Rates of T2DM were calculated for the overall population, by duration of therapy and by individual drugs. Crude and adjusted Cox proportional hazards were calculated to assess differences by duration of use and specific muscarinic antagonist. RESULTS: Over 2.6 million antimuscarinic prescriptions were dispensed to 241 829 females (mean age/SD, 62 ± 18 years). Patients exposed to M3 selective antagonists had highest risk of developing T2DM compared to those exposed to nonselective antagonists. Using oxybutynin, a nonselective antagonist as a comparator, adjusted rate ratios of T2DM were 57% (HR 1.57, 95%CI 1.48-1.67) and 29% (HR 1.29, 95%CI 1.24-1.35) significantly higher for darifenacin and solifenacin, respectively (both M3 selective). CONCLUSIONS: We found exposure to M3 selective antagonists darifenacin and solifenacin had the highest risk of developing T2DM compared to nonselective antagonist oxybutynin. This is supported by well described physiologic mechanisms and may allow for more informed prescribing decisions, particularly if minimizing risk of T2DM is a priority.


Assuntos
Diabetes Mellitus Tipo 2 , Serviços de Saúde Militar , Bexiga Urinária Hiperativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Antagonistas Muscarínicos/efeitos adversos , Estudos Retrospectivos
5.
J Infect Dis ; 220(11): 1761-1770, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31549155

RESUMO

BACKGROUND: Plasmodium vivax malaria requires a 2-week course of primaquine (PQ) for radical cure. Evidence suggests that the hepatic isoenzyme cytochrome P450 2D6 (CYP2D6) is the key enzyme required to convert PQ into its active metabolite. METHODS: CYP2D6 genotypes and phenotypes of 550 service personnel were determined, and the pharmacokinetics (PK) of a 30-mg oral dose of PQ was measured in 45 volunteers. Blood and urine samples were collected, with PQ and metabolites were measured using ultraperformance liquid chromatography with mass spectrometry. RESULTS: Seventy-six CYP2D6 genotypes were characterized for 530 service personnel. Of the 515 personnel for whom a single phenotype was predicted, 58% had a normal metabolizer (NM) phenotype, 35% had an intermediate metabolizer (IM) phenotype, 5% had a poor metabolizer (PM) phenotype, and 2% had an ultrametabolizer phenotype. The median PQ area under the concentration time curve from 0 to ∞ was lower for the NM phenotype as compared to the IM or PM phenotypes. The novel 5,6-ortho-quinone was detected in urine but not plasma from all personnel with the NM phenotype. CONCLUSION: The plasma PK profile suggests PQ metabolism is decreased in personnel with the IM or PM phenotypes as compared to those with the NM phenotype. The finding of 5,6-ortho-quinone, the stable surrogate for the unstable 5-hydroxyprimaquine metabolite, almost exclusively in personnel with the NM phenotype, compared with sporadic or no production in those with the IM or PM phenotypes, provides further evidence for the role of CYP2D6 in radical cure. CLINICAL TRIALS REGISTRATION: NCT02960568.


Assuntos
Antimaláricos/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Genótipo , Primaquina/metabolismo , Administração Oral , Adolescente , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Análise Química do Sangue , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Militares , Fenótipo , Plasma/química , Primaquina/administração & dosagem , Primaquina/farmacocinética , Estados Unidos , Urinálise , Urina/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...