Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 685: 1139-1151, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390704

RESUMO

Water saving techniques, such as alternate wetting and drying (AWD), are becoming a necessity in modern rice farming because of climate change mitigation and growing water use scarcity. Reducing water can vastly reduce methane (CH4) emissions; however, this net climate benefit may be offset by enhanced carbon dioxide (CO2) emissions from soil. The main aims of this study were: to determine the effects of AWD on yield and ecosystem C dynamics, and to establish the underlying mechanistic basis for observed trends in net ecosystem C gain or loss in an Italian rice paddy. We investigated the effects of conventional water management (i.e. conventionally flooded paddy; CF) and AWD on biomass accumulation (aboveground, belowground, grain), key ecosystem C fluxes (net ecosystem exchange (NEE), net primary productivity (NPP), gross primary productivity (GPP), ecosystem respiration (ER), autotrophic respiration (RA), heterotrophic respiration (RH)), and soil organic matter (SOM) decay for four common commercial European rice cultivars. The most significant finding was that neither treatment nor cultivar affected NEE, GPP, ER or SOM decomposition. RA was the dominant contributor to ER for both CF and AWD treatments. Cultivar and treatment affected the total biomass of the rice plants; specifically, with greater root production in CF compared to AWD. Importantly, there was no effect of treatment on the overall yield for any cultivar. Possibly, the wetting-drying cycles may have been insufficient to allow substantial soil C metabolism or there was a lack of labile substrate in the soil. These results imply that AWD systems may not be at risk of enhancing soil C loss, making it a viable solution for climate change mitigation and water conservation. Although more studies are needed, the initial outlook for AWD in Europe is positive; with no net loss of soil C from SOM decomposition, whilst also maintaining yield.


Assuntos
Agricultura/métodos , Conservação dos Recursos Hídricos/métodos , Oryza/crescimento & desenvolvimento , Biomassa , Ecossistema , Europa (Continente)
2.
Sci Total Environ ; 579: 60-71, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866746

RESUMO

The effects of increased tropospheric ozone (O3) pollution levels on methane (CH4) emissions from peatlands, and their underlying mechanisms, remain unclear. In this study, we exposed peatland mesocosms from a temperate wet heath dominated by the sedge Schoenus nigricans and Sphagnum papillosum to four O3 treatments in open-top chambers for 2.5years, to investigate the O3 impacts on CH4 emissions and the processes that underpin these responses. Summer CH4 emissions, were significantly reduced, by 27% over the experiment, due to summer daytime (8hday-1) O3 exposure to non-filtered air (NFA) plus 35ppb O3, but were not significantly affected by year-round, 24hday-1, exposure to NFA plus 10ppb or NFA plus 25ppb O3. There was no evidence that the reduced CH4 emissions in response to elevated summer O3 exposure were caused by reduced plant-derived carbon availability below-ground, because we found no significant effect of high summer O3 exposure on root biomass, pore water dissolved organic carbon concentrations or the contribution of recent photosynthate to CH4 emissions. Our CH4 production potential and CH4 oxidation potential measurements in the different O3 treatments could also not explain the observed CH4 emission responses to O3. However, pore water ammonium concentrations at 20cm depth were consistently reduced during the experiment by elevated summer O3 exposure, and strong positive correlations were observed between CH4 emission and pore water ammonium concentration at three peat depths over the 2.5-year study. Our results therefore imply that elevated regional O3 exposures in summer, but not the small increases in northern hemisphere annual mean background O3 concentrations predicted over this century, may lead to reduced CH4 emissions from temperate peatlands as a consequence of reductions in soil inorganic nitrogen affecting methanogenic and/or methanotrophic activity.


Assuntos
Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental , Metano/análise , Ozônio/análise , Cyperaceae , Sphagnopsida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...