Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Euro Surveill ; 28(40)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796440

RESUMO

BackgroundWest Nile virus (WNV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans and horses are incidental dead-end hosts. In 2020, the largest outbreak of West Nile virus infection in the Iberian Peninsula occurred, with 141 clusters in horses and 77 human cases.AimWe analysed which drivers influence spillover from the cycle to humans and equines and identified areas at risk for WNV transmission.MethodsBased on data on WNV cases in horses and humans in 2020 in Portugal and Spain, we developed logistic regression models using environmental and anthropic variables to highlight risk areas. Models were adapted to a high-resolution risk map.ResultsCases of WNV in horses could be used as indicators of viral activity and thus predict cases in humans. The risk map of horses was able to define high-risk areas for previous cases in humans and equines in Portugal and Spain, as well as predict human and horse cases in the transmission seasons of 2021 and 2022. We found that the spatial patterns of the favourable areas for outbreaks correspond to the main hydrographic basins of the Iberian Peninsula, jointly affecting Portugal and Spain.ConclusionA risk map highlighting the risk areas for potential future cases could be cost-effective as a means of promoting preventive measures to decrease incidence of WNV infection in Europe, based on a One Health surveillance approach.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Cavalos , Animais , Europa (Continente) , Portugal/epidemiologia , Espanha/epidemiologia , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
2.
One Health ; 17: 100585, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37359749

RESUMO

West Nile virus (WNV) is a globally significant vector-borne disease that is primarily transmitted between birds and mosquitoes. Recently, there has been an increase in WNV in southern Europe, with new cases reported in more northern regions. Bird migration plays a crucial role in the introduction of WNV in distant areas. To better understand and address this complex issue, we adopted a One Health approach, integrating clinical, zoological, and ecological data. We analyzed the role of migratory birds in the Palaearctic-African region in the spread of WNV across Africa and Europe. We categorized bird species into breeding and wintering chorotypes based on their distribution during the breeding season in the Western Palaearctic and the wintering season in the Afrotropical region, respectively. By linking these chorotypes to the occurrence of WNV outbreaks in both continents throughout the annual bird migration cycle, we investigated the relationship between migratory patterns and virus spread. We demonstrate that WNV-risk areas are interconnected through the migration of birds. We identified a total of 61 species that potentially contribute to the intercontinental spread of the virus or its variants, as well as pinpointed high-risk areas for future outbreaks. This interdisciplinary approach, which considers the interconnectedness of animals, humans, and ecosystems, represents a pioneering effort to establish connections between zoonotic diseases across continents. The findings of our study can aid in anticipating the arrival of new WNV strains and predicting the occurrence of other re-emerging diseases. By incorporating various disciplines, we can enhance our understanding of these complex dynamics and provide valuable insights for proactive and comprehensive disease management strategies.

3.
Travel Med Infect Dis ; 52: 102529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36549415

RESUMO

International travellers are exposed to pathogens not commonly found in their countries of residence, including West Nile virus (WNV). Due to the difficulty of its diagnosis, little is known about its distribution in Africa. Understanding the geographic extent of risk of WNV infections is a necessity for both travellers and clinicians who advise and treat them, since there is no human vaccine. To date, there is no risk map for WNV infections in humans in Africa. Having a high-resolution risk map for the virus could be of relevance before the trip, to take preventive measures, and after the trip, for appropriate diagnosis of the disease. Virus detection in humans along the African continent were collected from official reports, and published scientific research for the period 1940 to 2020, and then geo-referenced in order to use biogeographical modelling for WNV. Models were based on fuzzy logic and machine learning algorithms and were designed to identify the environmental drivers that explain the distribution of human cases and to locate favourable areas for infections. We elaborated a high-resolution risk map for WNV infections that highlights favourable areas for infections in Africa. Although WNV infections are widely spread across Africa, the risk of the disease is not homogenously distributed. Popular tourist destinations such as Morocco, Tunisia, and South Africa, are high-risk areas for WNV infection.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Febre do Nilo Ocidental/epidemiologia , Marrocos , África do Sul
4.
Commun Biol ; 5(1): 530, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654842

RESUMO

Yellow fever is transmitted by mosquitoes among human and non-human primates. In the last decades, infections are occurring in areas that had been free from yellow fever for decades, probably as a consequence of the rapid spread of mosquito vectors, and of the virus evolutionary dynamic in which non-human primates are involved. This research is a pathogeographic assessment of where enzootic cycles, based on primate assemblages, could be amplifying the risk of yellow fever infections, in the context of spatial changes shown by the disease since the late 20th century. In South America, the most relevant spread of disease cases affects parts of the Amazon basin and a wide area of southern Brazil, where forest fragmentation could be activating enzootic cycles next to urban areas. In Africa, yellow fever transmission is apparently spreading from the west of the continent, and primates could be contributing to this in savannas around rainforests. Our results are useful for identifying new areas that should be prioritised for vaccination, and suggest the need of deep yellow fever surveillance in primates of South America and Africa.


Assuntos
Culicidae , Febre Amarela , Animais , Brasil/epidemiologia , Mosquitos Vetores , Vacinação , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle
5.
Proc Natl Acad Sci U S A ; 119(21): e2113936119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35580185

RESUMO

The evolutionary history of African hunter-gatherers holds key insights into modern human diversity. Here, we combine ethnographic and genetic data on Central African hunter-gatherers (CAHG) to show that their current distribution and density are explained by ecology rather than by a displacement to marginal habitats due to recent farming expansions, as commonly assumed. We also estimate the range of hunter-gatherer presence across Central Africa over the past 120,000 years using paleoclimatic reconstructions, which were statistically validated by our newly compiled dataset of dated archaeological sites. Finally, we show that genomic estimates of divergence times between CAHG groups match our ecological estimates of periods favoring population splits, and that recoveries of connectivity would have facilitated subsequent gene flow. Our results reveal that CAHG stem from a deep history of partially connected populations. This form of sociality allowed the coexistence of relatively large effective population sizes and local differentiation, with important implications for the evolution of genetic and cultural diversity in Homo sapiens.


Assuntos
Antropologia Cultural , Arqueologia , Variação Genética , Densidade Demográfica , África , Agricultura , Diversidade Cultural , Humanos
6.
Emerg Infect Dis ; 28(4): 777-785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318911

RESUMO

West Nile virus (WNV) is an emergent arthropodborne virus that is transmitted from bird to bird by mosquitoes. Spillover events occur when infected mosquitoes bite mammals. We created a geopositioned database of WNV presence in Africa and considered reports of the virus in all animal components: reservoirs, vectors, and nonhuman dead-end hosts. We built various biogeographic models to determine which drivers explain the distribution of WNV throughout Africa. Wetlands of international importance for birds accounted for the detection of WNV in all animal components, whereas human-related drivers played a key role in the epizootic cases. We combined these models to obtain an integrative and large-scale perspective of the areas at risk for WNV spillover. Understanding which areas pose the highest risk would enable us to address the management of this spreading disease and to comprehend the translocation of WNV outside Africa through avian migration routes.


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , África/epidemiologia , Animais , Mamíferos , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética
7.
PLoS Negl Trop Dis ; 15(6): e0009496, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097704

RESUMO

Dengue is a viral disease transmitted by mosquitoes. The rapid spread of dengue could lead to a global pandemic, and so the geographical extent of this spread needs to be assessed and predicted. There are also reasons to suggest that transmission of dengue from non-human primates in tropical forest cycles is being underestimated. We investigate the fine-scale geographic changes in transmission risk since the late 20th century, and take into account for the first time the potential role that primate biogeography and sylvatic vectors play in increasing the disease transmission risk. We apply a biogeographic framework to the most recent global dataset of dengue cases. Temporally stratified models describing favorable areas for vector presence and for disease transmission are combined. Our models were validated for predictive capacity, and point to a significant broadening of vector presence in tropical and non-tropical areas globally. We show that dengue transmission is likely to spread to affected areas in China, Papua New Guinea, Australia, USA, Colombia, Venezuela, Madagascar, as well as to cities in Europe and Japan. These models also suggest that dengue transmission is likely to spread to regions where there are presently no or very few reports of occurrence. According to our results, sylvatic dengue cycles account for a small percentage of the global extent of the human case record, but could be increasing in relevance in Asia, Africa, and South America. The spatial distribution of factors favoring transmission risk in different regions of the world allows for distinct management strategies to be prepared.


Assuntos
Dengue/epidemiologia , Surtos de Doenças , Zoonoses Virais , Aedes , Animais , Dengue/transmissão , Dengue/veterinária , Vírus da Dengue/fisiologia , Geografia , Humanos , Mosquitos Vetores/virologia , Primatas/virologia
8.
PLoS Negl Trop Dis ; 15(1): e0009022, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411739

RESUMO

West Nile virus is a widely spread arthropod-born virus, which has mosquitoes as vectors and birds as reservoirs. Humans, as dead-end hosts of the virus, may suffer West Nile Fever (WNF), which sometimes leads to death. In Europe, the first large-scale epidemic of WNF occurred in 1996 in Romania. Since then, human cases have increased in the continent, where the highest number of cases occurred in 2018. Using the location of WNF cases in 2017 and favorability models, we developed two risk models, one environmental and the other spatio-environmental, and tested their capacity to predict in 2018: 1) the location of WNF; 2) the intensity of the outbreaks (i.e. the number of confirmed human cases); and 3) the imminence of the cases (i.e. the Julian week in which the first case occurred). We found that climatic variables (the maximum temperature of the warmest month and the annual temperature range), human-related variables (rain-fed agriculture, the density of poultry and horses), and topo-hydrographic variables (the presence of rivers and altitude) were the best environmental predictors of WNF outbreaks in Europe. The spatio-environmental model was the most useful in predicting the location of WNF outbreaks, which suggests that a spatial structure, probably related to bird migration routes, has a role in the geographical pattern of WNF in Europe. Both the intensity of cases and their imminence were best predicted using the environmental model, suggesting that these features of the disease are linked to the environmental characteristics of the areas. We highlight the relevance of river basins in the propagation dynamics of the disease, as outbreaks started in the lower parts of the river basins, from where WNF spread towards the upper parts. Therefore, river basins should be considered as operational geographic units for the public health management of the disease.


Assuntos
Febre do Nilo Ocidental/epidemiologia , Clima , Surtos de Doenças , Meio Ambiente , Europa (Continente)/epidemiologia , Humanos , Rios , Febre do Nilo Ocidental/transmissão
9.
Parasit Vectors ; 12(1): 428, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488198

RESUMO

BACKGROUND: Over the last decade, reports about dengue cases have increase worldwide, which is particularly worrisome in South America due to the historic record of dengue outbreaks from the seventeenth century until the first half of the twentieth century. Dengue is a viral disease that involves insect vectors, namely Aedes aegypti and Ae. albopictus, which implies that, to prevent and combat outbreaks, it is necessary to understand the set of ecological and biogeographical factors affecting both the vector species and the virus. METHODS: We contribute with a methodology based on fuzzy logic that is helpful to disentangle the main factors that determine favorable environmental conditions for vectors and diseases. Using favorability functions as fuzzy logic modelling technique and the fuzzy intersection, union and inclusion as fuzzy operators, we were able to specify the territories at biogeographical risk of dengue outbreaks in South America. RESULTS: Our results indicate that the distribution of Ae. aegypti mostly encompasses the biogeographical framework of dengue in South America, which suggests that this species is the principal vector responsible for the geographical extent of dengue cases in the continent. Nevertheless, the intersection between the favorability for dengue cases and the union of the favorability for any of the vector species provided a comprehensive map of the biogeographical risk for dengue. CONCLUSIONS: Fuzzy logic is an appropriate conceptual and operational tool to tackle the nuances of the vector-illness biogeographical interaction. The application of fuzzy logic may be useful in decision-making by the public health authorities to prevent, control and mitigate vector-borne diseases.


Assuntos
Dengue/epidemiologia , Mosquitos Vetores/virologia , Animais , Dengue/transmissão , Vírus da Dengue , Surtos de Doenças/prevenção & controle , Lógica Fuzzy , Geografia , Mosquitos Vetores/fisiologia , Fatores de Risco , América do Sul
10.
Mem Inst Oswaldo Cruz ; 114: e180569, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166479

RESUMO

BACKGROUND: Currently, there is an increasing global interest for the study of how infectious diseases could be linked to climate and weather variability. The Chagas disease was described in 1909 by Carlos Chagas, and is caused by the flagellate protozoan Trypanosoma cruzi. The Chagas disease is considered one of the biggest concerns in public health in Latin America. In Chile, the main vectors involved in the transmission of T. cruzi are arthropods of the Triatominae subfamily. Moreover, another main transmission way is through of vectors by fecal-urine way, however, oral way also has been described among others transmission form. OBJECTIVES: In order to get understand outbreaks of Chagas-disease, we search for possible relationships between the frequency of cases in the Chilean population and atmospheric oscillations. METHODS: We explored the two most important atmospheric oscillations in the Southern Hemisphere: southern oscillation index (SOI) and Antarctic oscillation (AAO), during the available years with official data. Because the number of migrant people born outside from Chile increasing significantively between 2014 and 2018, we used for the analysis two different periods from data available official data: (i) 2001 to 2014, (ii) 2001 to 2017. FINDINGS: For both periods we observed a significant and positive relation between AAO one year before. However, for the 2001 to 2014 period positive SOI one year before, which is related with La Niña phases, was the more important variable. MAIN CONCLUSIONS: The Chagas disease frequency per year in Chile was found to depend mainly on SOI in previous year, whose values can be determined one year in advance. Therefore, it is possible to partially forecast annual frequency patterns. This could have important applications in public health strategies and for allocating resources for the management of the disease.


Assuntos
Atmosfera , Doença de Chagas/epidemiologia , Mudança Climática , Surtos de Doenças/estatística & dados numéricos , Doença de Chagas/transmissão , Chile/epidemiologia , Humanos , Valores de Referência , Fatores de Tempo
11.
Mem. Inst. Oswaldo Cruz ; 114: e180569, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1012668

RESUMO

BACKGROUND Currently, there is an increasing global interest for the study of how infectious diseases could be linked to climate and weather variability. The Chagas disease was described in 1909 by Carlos Chagas, and is caused by the flagellate protozoan Trypanosoma cruzi. The Chagas disease is considered one of the biggest concerns in public health in Latin America. In Chile, the main vectors involved in the transmission of T. cruzi are arthropods of the Triatominae subfamily. Moreover, another main transmission way is through of vectors by fecal-urine way, however, oral way also has been described among others transmission form. OBJECTIVES In order to get understand outbreaks of Chagas-disease, we search for possible relationships between the frequency of cases in the Chilean population and atmospheric oscillations. METHODS We explored the two most important atmospheric oscillations in the Southern Hemisphere: southern oscillation index (SOI) and Antarctic oscillation (AAO), during the available years with official data. Because the number of migrant people born outside from Chile increasing significantively between 2014 and 2018, we used for the analysis two different periods from data available official data: (i) 2001 to 2014, (ii) 2001 to 2017. FINDINGS For both periods we observed a significant and positive relation between AAO one year before. However, for the 2001 to 2014 period positive SOI one year before, which is related with La Niña phases, was the more important variable. MAIN CONCLUSIONS The Chagas disease frequency per year in Chile was found to depend mainly on SOI in previous year, whose values can be determined one year in advance. Therefore, it is possible to partially forecast annual frequency patterns. This could have important applications in public health strategies and for allocating resources for the management of the disease.


Assuntos
Humanos , Doenças Transmissíveis , Doença de Chagas/diagnóstico , Chile/epidemiologia
12.
Ecography ; 41(9): 1411-1427, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32313369

RESUMO

Biogeography is an implicit and fundamental component of almost every dimension of modern biology, from natural selection and speciation to invasive species and biodiversity management. However, biogeography has rarely been integrated into human or veterinary medicine nor routinely leveraged for global health management. Here we review the theory and application of biogeography to the research and management of human infectious diseases, an integration we refer to as 'pathogeography'. Pathogeography represents a promising framework for understanding and decomposing the spatial distributions, diversity patterns and emergence risks of human infectious diseases into interpretable components of dynamic socio-ecological systems. Analytical tools from biogeography are already helping to improve our understanding of individual infectious disease distributions and the processes that shape them in space and time. At higher levels of organization, biogeographical studies of diseases are rarer but increasing, improving our ability to describe and explain patterns that emerge at the level of disease communities (e.g. co-occurrence, diversity patterns, biogeographic regionalisation). Even in a highly globalized world most human infectious diseases remain constrained in their geographic distributions by ecological barriers to the dispersal or establishment of their causal pathogens, reservoir hosts and/or vectors. These same processes underpin the spatial arrangement of other taxa, such as mammalian biodiversity, providing a strong empirical 'prior' with which to assess the potential distributions of infectious diseases when data on their occurrence is unavailable or limited. In the absence of quality data, generalized biogeographic patterns could provide the earliest (and in some cases the only) insights into the potential distributions of many poorly known or emerging, or as-yet-unknown, infectious disease risks. Encouraging more community ecologists and biogeographers to collaborate with health professionals (and vice versa) has the potential to improve our understanding of infectious disease systems and identify novel management strategies to improve local, global and planetary health.

13.
Pest Manag Sci ; 74(1): 111-119, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28722344

RESUMO

BACKGROUND: Numerous small and medium-sized mammal pests cause widespread and economically significant damage to crops all over the globe. However, most research on pest species has focused on accounts of the level of damage. There are fewer studies concentrating on the description of crop damage caused by pests at large geographical scales, or on analysis of the ecological and anthropogenic factors correlated with these observed patterns. We investigated the relationship between agricultural damage by the European rabbit (Oryctolagus cuniculus) and environmental and anthropogenic variables throughout Spain. RESULTS: Rabbit damage was mainly concentrated within the central-southern regions of Spain. We found that rabbit damage increased significantly between the early 2000s and 2013. Greater losses were typical of those areas where farming dominated and natural vegetation was scarce, where main railways and highways were present, and where environmental conditions were generally favourable for rabbit populations to proliferate. CONCLUSION: From our analysis, we suggest that roads and railway lines act as potential corridors along which rabbits can spread. The recent increase in Spain of such infrastructure may explain the rise in rabbit damage reported in this study. Our approach is valuable as a method for assessing drivers of wildlife pest damage at large spatial scales, and can be used to propose methods to reduce human - wildlife conflict. © 2017 Society of Chemical Industry.


Assuntos
Agricultura , Produtos Agrícolas , Cadeia Alimentar , Coelhos , Animais , Controle de Pragas , Espanha
14.
Sci Rep ; 7(1): 14291, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085050

RESUMO

Ebola virus disease (EVD) is a contagious, severe and often lethal form of hemorrhagic fever in humans. The association of EVD outbreaks with forest clearance has been suggested previously but many aspects remained uncharacterized. We used remote sensing techniques to investigate the association between deforestation in time and space, with EVD outbreaks in Central and West Africa. Favorability modeling, centered on 27 EVD outbreak sites and 280 comparable control sites, revealed that outbreaks located along the limits of the rainforest biome were significantly associated with forest losses within the previous 2 years. This association was strongest for closed forests (>83%), both intact and disturbed, of a range of tree heights (5->19 m). Our results suggest that the increased probability of an EVD outbreak occurring in a site is linked to recent deforestation events, and that preventing the loss of forests could reduce the likelihood of future outbreaks.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Surtos de Doenças/estatística & dados numéricos , Doença pelo Vírus Ebola/epidemiologia , Tecnologia de Sensoriamento Remoto , África Central/epidemiologia , África Ocidental/epidemiologia , Surtos de Doenças/prevenção & controle , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Atividades Humanas , Humanos , Floresta Úmida , Análise Espaço-Temporal , Árvores/fisiologia
15.
Rev. biol. trop ; 64(4): 1661-1682, oct.-dic. 2016. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-958242

RESUMO

Abstract:Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing, overall hunting, and more specifically the hunting of primates, Mazama americana, Dasyprocta fuliginosa, and Tayassu pecari. Our results showed that TEK-based approaches can serve as a basis for validating the livelihood relevance of landscapes in high-value conservation areas, which can form the basis for furthering the management of natural resources in these regions. Rev. Biol. Trop. 64 (4): 1661-1682. Epub 2016 December 01.


Resumen:La teledetección y el conocimiento ecológico tradicional (CET) se pueden combinar para avanzar en la conservación de regiones tropicales remotas como la Amazonía, donde la toma de datos intensiva in situ a menudo es imposible. Integrar el CET en el seguimiento y el manejo de estas áreas permite la participación de la comunidad, y ofrece nuevos puntos de vista sobre el uso sostenible de los recursos naturales. En este estudio se desarrolla un mapa de cobertura del suelo del Escudo Guayanés (Venezuela), con una resolución espacial de 250 m, basado en datos de teledetección, y se utiliza el CET para validar su relevancia en relación con la subsistencia de los pueblos indígenas y el uso que éstos hacen del territorio. En primer lugar se ha empleado un índice de vegetación basado en teledetección hiper-temporal para realizar una clasificación del territorio. Durante una expedición fluvial de 8 días, a lo largo de 1 300 km por áreas sin carreteras en el Estado Amazonas (Venezuela), se han visitado seis comunidades que han proporcionado datos geo-referenciados sobre sus actividades cinegéticas, pesqueras y agrícolas. Estos datos de CET se han superpuesto al mapa de clasificación, con el fin de relacionar las clases de coberturas con los usos indígenas. Se han caracterizado las clases de cobertura en función de patrones de cambio temporal del verdor y la topo-hidrografía, y se han propuesto 12 tipos de cobertura del suelo, agrupadas en cinco tipos principales de paisaje: 1) masas de agua; 2) campo abierto/ márgenes del bosque; 3) bosques siempre-verdes; 4) bosques semi-caducifolios submontanos; y 5) bosques nublados. Cada clase de cobertura del suelo se ha identificado con un perfil pulsátil que describe cambios temporales en el verdor, de ahí que el mapa haya sido titulado "El Pulso del Bosque". Estos perfiles de verdor han mostrado una tendencia ligeramente ascendente, durante el periodo 2000 a 2009, en las clases que representan pastizales y zonas de matorral, así como una tendencia ligeramente decreciente en las clases que representan bosques. Este hallazgo es compatible con la ganancia de carbono en los pastizales como consecuencia del calentamiento del clima, y también con una cierta pérdida de vegetación en los bosques. De este modo, nuestra clasificación muestra potencial para la evaluación de efectos futuros del cambio climático sobre el paisaje. Algunas clases han resultado estar significativamente relacionadas con la agricultura, la pesca, la caza como práctica general, y más concretamente con la caza de primates, de Mazama Americana, Dasyprocta fuliginosa, y Tayassu pecari. Los resultados demuestran la utilidad de las aproximaciones basadas en CET como base para validar la importancia del paisaje, en áreas con alto valor de conservación, para la supervivencia de las personas, lo que proporciona una base para avanzar en el manejo de los recursos naturales en estas regiones.


Assuntos
Humanos , Indígenas Sul-Americanos/etnologia , Florestas , Tecnologia de Sensoriamento Remoto/métodos , Mapeamento Geográfico , Análise Espaço-Temporal , Monitorização de Parâmetros Ecológicos/métodos , Valores de Referência , Venezuela/etnologia , Modelos Logísticos , Reprodutibilidade dos Testes , Conservação dos Recursos Naturais , Pradaria , Rios , Agricultura/estatística & dados numéricos
16.
PLoS One ; 11(9): e0161703, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27589384

RESUMO

We use data on game harvest from 60 Pygmy and non-Pygmy settlements in the Congo Basin forests to examine whether hunting patterns and prey profiles differ between the two hunter groups. For each group, we calculate hunted animal numbers and biomass available per inhabitant, P, per year (harvest rates) and killed per hunter, H, per year (extraction rates). We assess the impact of hunting of both hunter groups from estimates of numbers and biomass of prey species killed per square kilometre, and by examining the proportion of hunted taxa of low, medium and high population growth rates as a measure of their vulnerability to overhunting. We then map harvested biomass (kg-1P-1Yr-1) of bushmeat by Pygmies and non-Pygmies throughout the Congo Basin. Hunting patterns differ between Pygmies and non-Pygmies; Pygmies take larger and different prey and non-Pygmies sell more for profit. We show that non-Pygmies have a potentially more severe impact on prey populations than Pygmies. This is because non-Pygmies hunt a wider range of species, and twice as many animals are taken per square kilometre. Moreover, in non-Pygmy settlements there was a larger proportion of game taken of low population growth rate. Our harvest map shows that the non-Pygmy population may be responsible for 27 times more animals harvested than the Pygmy population. Such differences indicate that the intense competition that may arise from the more widespread commercial hunting by non-Pygmies is a far more important constraint and source of conflict than are protected areas.


Assuntos
Conservação dos Recursos Naturais , Florestas , Animais , População Negra , Congo , Humanos
17.
PLoS One ; 11(1): e0144499, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26735953

RESUMO

Pygmy populations occupy a vast territory extending west-to-east along the central African belt from the Congo Basin to Lake Victoria. However, their numbers and actual distribution is not known precisely. Here, we undertake this task by using locational data and population sizes for an unprecedented number of known Pygmy camps and settlements (n = 654) in five of the nine countries where currently distributed. With these data we develop spatial distribution models based on the favourability function, which distinguish areas with favourable environmental conditions from those less suitable for Pygmy presence. Highly favourable areas were significantly explained by presence of tropical forests, and by lower human pressure variables. For documented Pygmy settlements, we use the relationship between observed population sizes and predicted favourability values to estimate the total Pygmy population throughout Central Africa. We estimate that around 920,000 Pygmies (over 60% in DRC) is possible within favourable forest areas in Central Africa. We argue that fragmentation of the existing Pygmy populations, alongside pressure from extractive industries and sometimes conflict with conservation areas, endanger their future. There is an urgent need to inform policies that can mitigate against future external threats to these indigenous peoples' culture and lifestyles.


Assuntos
Densidade Demográfica , África Central , Florestas , Migração Humana , Humanos , Modelos Teóricos
18.
Rev Biol Trop ; 64(4): 1661-82, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29465944

RESUMO

Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing, overall hunting, and more specifically the hunting of primates, Mazama americana, Dasyprocta fuliginosa, and Tayassu pecari. Our results showed that TEK-based approaches can serve as a basis for validating the livelihood relevance of landscapes in high-value conservation areas, which can form the basis for furthering the management of natural resources in these regions.


Assuntos
Monitorização de Parâmetros Ecológicos/métodos , Florestas , Mapeamento Geográfico , Indígenas Sul-Americanos/etnologia , Tecnologia de Sensoriamento Remoto/métodos , Análise Espaço-Temporal , Agricultura/estatística & dados numéricos , Conservação dos Recursos Naturais , Pradaria , Humanos , Modelos Logísticos , Valores de Referência , Reprodutibilidade dos Testes , Rios , Venezuela/etnologia
19.
Sci Rep ; 5: 8168, 2015 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-25639588

RESUMO

We studied links between human malnutrition and wild meat availability within the Rainforest Biotic Zone in central Africa. We distinguished two distinct hunted mammalian diversity distributions, one in the rainforest areas (Deep Rainforest Diversity, DRD) containing taxa of lower hunting sustainability, the other in the northern rainforest-savanna mosaic, with species of greater hunting potential (Marginal Rainforest Diversity, MRD). Wild meat availability, assessed by standing crop mammalian biomass, was greater in MRD than in DRD areas. Predicted bushmeat extraction was also higher in MRD areas. Despite this, stunting of children, a measure of human malnutrition, was greater in MRD areas. Structural equation modeling identified that, in MRD areas, mammal diversity fell away from urban areas, but proximity to these positively influenced higher stunting incidence. In DRD areas, remoteness and distance from dense human settlements and infrastructures explained lower stunting levels. Moreover, stunting was higher away from protected areas. Our results suggest that in MRD areas, forest wildlife rational use for better human nutrition is possible. By contrast, the relatively low human populations in DRD areas currently offer abundant opportunities for the continued protection of more vulnerable mammals and allow dietary needs of local populations to be met.


Assuntos
Ingestão de Alimentos , Carne , África Central , Animais , Animais Selvagens , Conservação dos Recursos Naturais , Humanos , Modelos Biológicos , Fenômenos Fisiológicos da Nutrição , Dinâmica Populacional
20.
Conserv Biol ; 29(3): 805-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25580729

RESUMO

We used data on number of carcasses of wildlife species sold in 79 bushmeat markets in a region of Nigeria and Cameroon to assess whether species composition of a market could be explained by anthropogenic pressures and environmental variables around each market. More than 45 mammal species from 9 orders were traded across all markets; mostly ungulates and rodents. For each market, we determined median body mass, species diversity (game diversity), and taxa that were principal contributors to the total number of carcasses for sale (game dominance). Human population density in surrounding areas was significantly and negatively related to the percentage ungulates and primates sold in markets and significantly and positively related to the proportion of rodents. The proportion of carnivores sold was higher in markets with high human population densities. Proportion of small-bodied mammals (<1 kg) sold in markets increased as human population density increased, but proportion of large-bodied mammals (>10 kg) decreased as human population density increased. We calculated an index of game depletion (GDI) for each market from the sum of the total number of carcasses traded per annum and species, weighted by the intrinsic rate of natural increase (rmax ) of each species, divided by individuals traded in a market. The GDI of a market increased as the proportion of fast-reproducing species (highest rmax ) increased and as the representation of species with lowest rmax (slow-reproducing) decreased. The best explanatory factor for a market's GDI was anthropogenic pressure-road density, human settlements with >3000 inhabitants, and nonforest vegetation. High and low GDI were significantly differentiated by human density and human settlements with >3000 inhabitants. Our results provided empirical evidence that human activity is correlated with more depleted bushmeat faunas and can be used as a proxy to determine areas in need of conservation action.


Assuntos
Conservação dos Recursos Naturais , Mamíferos , Carne , Densidade Demográfica , Animais , Camarões , Comércio , Conservação dos Recursos Naturais/economia , Humanos , Carne/economia , Nigéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...