Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 22(4): e2100383, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984818

RESUMO

Synthetic and natural biomaterials are a promising alternative for the treatment of critical-sized bone defects. Several parameters such as their porosity, surface, and mechanical properties are extensively pointed out as key points to recapitulate the bone microenvironment. Many biomaterials with this pursuit are employed to provide a matrix, which can supply the specific environment and architecture for an adequate bone growth. Nevertheless, some queries remain unanswered. This review discusses the recent advances achieved by some synthetic and natural biomaterials to mimic the native structure of bone and the manufacturing technology applied to obtain biomaterial candidates. The focus of this review is placed in the recent advances in the development of biomaterial-based therapy for bone defects in different types of bone. In this context, this review gives an overview of the potentialities of synthetic and natural biomaterials: polyurethanes, polyesters, hyaluronic acid, collagen, titanium, and silica as successful candidates for the treatment of bone defects.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Colágeno , Porosidade , Engenharia Tecidual , Titânio/química
2.
J Biomed Mater Res A ; 107(9): 1999-2012, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31071230

RESUMO

Skin wound healing presents a unique challenge because of its complex healing process. Herein, we developed a hydrophobic wound dressing to incorporate simvastatin, which has potential application in the treatment of ulcers and prevention of wound infection. For that matter, collagen hydrogels were grafted with dodecenylsuccinic anhydride (DDSA). The chemical modification was confirmed by FTIR and solid state 13 C-NMR spectroscopies while the ultrastructure was observed by scanning electron microscope (SEM) images. In contact angle measurements, a higher water droplet angle in DDSA-collagen gels was observed. This was consistent with the swelling assay, in which water absorption was 5.2 g/g for collagen and 1.9 g/g for DDSA-collagen. Additionally, viability and adhesion studies were performed. Cell adhesion decreased ~11% in DDSA-collagen and the number of viable cells showed a tendency to decrease as DDSA concentration increased but it was only significantly lower above concentrations of 12%. Modified gels were loaded with simvastatin showing higher adsorption capacity and lower release. Lastly, the antimicrobial and anti-inflammatory activity of DDSA-collagen materials were assessed. DDSA-collagen hydrogels, either unloaded or loaded with simvastatin showed sustained antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus for 72 hr probably due to the hydrophobic interaction of DDSA chains with bacterial cell walls. The antimicrobial activity was stronger against S. aureus. Collagen hydrogels also presented a prolonged antibacterial activity when they were loaded with simvastatin, confirming the antimicrobial properties of statins. Finally, it was observed that these materials can stimulate resident macrophages and promote an M2 profile which is desirable in wound healing processes.


Assuntos
Antibacterianos , Bandagens , Colágeno , Hidrogéis , Pseudomonas aeruginosa/crescimento & desenvolvimento , Sinvastatina , Staphylococcus aureus/crescimento & desenvolvimento , Succinatos , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Linhagem Celular , Colágeno/química , Colágeno/farmacocinética , Colágeno/farmacologia , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Camundongos , Sinvastatina/química , Sinvastatina/farmacocinética , Sinvastatina/farmacologia , Succinatos/química , Succinatos/farmacocinética , Succinatos/farmacologia
3.
Curr Pharm Biotechnol ; 16(7): 661-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25934976

RESUMO

Non-porous bare silica nanoparticles, amine modified silica nanoparticles and mesoporous particles, were evaluated as carriers for sodium ibandronate. The synthesized nanoparticles were characterized by SEM, TEM, DLS and porosity. Then, their capacity to incorporate a bisphosphonate drug (sodium ibandronate) and the in vitro release behavior was analyzed by capillary electrophoresis. Mesoporous and amine-modified particles showed higher levels of drug incorporation, 44.68 mg g(-1) and 28.90 mg g(-1), respectively. The release kinetics from the two types of particles was similar following a first order kinetics. However, when these particles were included into collagen hydrogels only mesoporous nanoparticles had a sustained release for over 10 days. The biocompatibility of mesoporous particles towards Saos-2 cells was also evaluated by the MTT assay observing an increase in cell viability for concentrations lower than 0.6 mg ml(-1) of particles and a decrease for concentrations over 1.2 mg ml(-1). Furthermore, when these particles were incubated with mesenchymal cells it was observed that they had the capacity to promote the differentiation of the cells with a significant increase in the alkaline phosphatase activity.


Assuntos
Colágeno/síntese química , Difosfonatos/síntese química , Nanocompostos/química , Nanopartículas/química , Dióxido de Silício/síntese química , Animais , Linhagem Celular Tumoral , Células Cultivadas , Colágeno/metabolismo , Difosfonatos/metabolismo , Humanos , Ácido Ibandrônico , Nanopartículas/metabolismo , Tamanho da Partícula , Ratos , Dióxido de Silício/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA