Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Transpl Int ; 37: 12298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741700

RESUMO

Primary graft dysfunction (PGD) remains a challenge for lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for more detailed monitoring and understanding of the pathophysiology of PGD. The measurement of particle flow rate (PFR) in exhaled breath is a novel tool to monitor and understand the disease at the proteomic level. In total, 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on postoperative day 3. Exhaled breath particles (EBPs) were evaluated by mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Recipients with PGD had significantly higher PFR [686.4 (449.7-8,824.0) particles per minute (ppm)] compared to recipients without PGD [116.6 (79.7-307.4) ppm, p = 0.0005]. Porcine and human EBP proteins recapitulated proteins found in the BAL, demonstrating its utility instead of more invasive techniques. Furthermore, adherens and tight junction proteins were underexpressed in PGD tissue. Histological and proteomic analysis found significant changes to the alveolar-capillary barrier explaining the high PFR in PGD. Exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.


Assuntos
Testes Respiratórios , Líquido da Lavagem Broncoalveolar , Transplante de Pulmão , Disfunção Primária do Enxerto , Proteômica , Animais , Transplante de Pulmão/efeitos adversos , Proteômica/métodos , Disfunção Primária do Enxerto/metabolismo , Disfunção Primária do Enxerto/etiologia , Suínos , Humanos , Testes Respiratórios/métodos , Líquido da Lavagem Broncoalveolar/química , Feminino , Masculino , Expiração
2.
Sci Rep ; 14(1): 6662, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509285

RESUMO

Acute lung injury (ALI) represents an aetiologically diverse form of pulmonary damage. Part of the assessment and diagnosis of ALI depends on skilled observer-based scoring of brightfield microscopy tissue sections. Although this readout is sufficient to determine gross alterations in tissue structure, its categorical scores lack the sensitivity to describe more subtle changes in lung morphology. To generate a more sensitive readout of alveolar perturbation we carried out high resolution immunofluorescence imaging on 200 µm lung vibratome sections from baseline and acutely injured porcine lung tissue, stained with a tomato lectin, Lycopersicon Esculentum Dylight-488. With the ability to resolve individual alveoli along with their inner and outer wall we generated continuous readouts of alveolar wall thickness and circularity. From 212 alveoli traced from 10 baseline lung samples we established normal distributions for alveolar wall thickness (27.37; 95% CI [26.48:28.26]) and circularity (0.8609; 95% CI [0.8482:0.8667]) in healthy tissue. Compared to acutely injured lung tissue baseline tissue exhibited a significantly lower wall thickness (26.86 ± 0.4998 vs 50.55 ± 4.468; p = 0.0003) and higher degree of circularityϕ≤ (0.8783 ± 0.01965 vs 0.4133 ± 0.04366; p < 0.0001). These two components were subsequently combined into a single more sensitive variable, termed the morphological quotient (MQ), which exhibited a significant negative correlation (R2 = 0.9919, p < 0.0001) with the gold standard of observer-based scoring. Through the utilisation of advanced light imaging we show it is possible to generate sensitive continuous datasets describing fundamental morphological changes that arise in acute lung injury. These data represent valuable new analytical tools that can be used to precisely benchmark changes in alveolar morphology both in disease/injury as well as in response to treatment/therapy.


Assuntos
Lesão Pulmonar Aguda , Pulmão , Animais , Suínos , Alvéolos Pulmonares/diagnóstico por imagem , Lesão Pulmonar Aguda/diagnóstico por imagem , Microscopia , Imagem Óptica
3.
Immunology ; 171(4): 583-594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178705

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder involving scarring of pulmonary tissue and a subsequent decrease in respiratory capacity, ultimately resulting in death. Tartrate resistant acid phosphatase 5 (ACP5) plays a role in IPF but the exact mechanisms are yet to be elucidated. In this study, we have utilized various perturbations of the bleomycin mouse model of IPF including genetic knockout, RANKL inhibition, and macrophage adoptive transfer to further understand ACP5's role in pulmonary fibrosis. Genetic ablation of Acp5 decreased immune cell recruitment to the lungs and reduced the levels of hydroxyproline (reflecting extracellular matrix-production) as well as histological damage. Additionally, gene expression profiling of murine lung tissue revealed downregulation of genes including Ccl13, Mmp13, and Il-1α that encodes proteins specifically related to immune cell recruitment and macrophage/fibroblast interactions. Furthermore, antibody-based neutralization of RANKL, an important inducer of Acp5 expression, reduced immune cell recruitment but did not decrease fibrotic lung development. Adoptive transfer of Acp5-/- bone marrow-derived monocyte (BMDM) macrophages 7 or 14 days after bleomycin administration resulted in reductions of cytokine production and decreased levels of lung damage, compared to adoptive transfer of WT control macrophages. Taken together, the data presented in this study suggest that macrophage derived ACP5 plays an important role in development of pulmonary fibrosis and could present a tractable target for therapeutic intervention in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Animais , Camundongos , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo , Pulmão/patologia , Macrófagos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose , Bleomicina/metabolismo , Bleomicina/farmacologia
5.
Front Cardiovasc Med ; 10: 1274444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849943

RESUMO

Introduction: In recent years, the field of graft preservation has made considerable strides in improving outcomes related to solid organ restoration and regeneration. Ex vivo lung perfusion (EVLP) in line with the related devices and treatments has yielded promising results within preclinical and clinical studies, with the potential to improve graft quality. Its main benefit is to render marginal and declined donor lungs suitable for transplantation, ultimately increasing the donor pool available for transplantation. In addition, using such therapies in machine perfusion could also increase preservation time, facilitating logistical planning. Cytokine adsorption has been demonstrated as a potentially safe and effective therapy when applied to the EVLP circuit and post-transplantation. However, the mechanism by which this therapy improves the donor lung on a molecular basis is not yet fully understood. Methods: We hypothesized that there were characteristic inflammatory and immunomodulatory differences between the lungs treated with and without cytokine adsorption, reflecting proteomic changes in the gene ontology pathways and across inflammation-related proteins. In this study, we investigate the molecular mechanisms and signaling pathways of how cytokine adsorption impacts lung function when used during EVLP and post-transplantation as hemoperfusion in a porcine model. Lung tissues during EVLP and post-lung transplantation were analyzed for their proteomic profiles using mass spectrometry. Results: We found through gene set enrichment analysis that the inflammatory and immune processes and coagulation pathways were significantly affected by the cytokine treatment after EVLP and transplantation. Conclusion: In conclusion, we showed that the molecular mechanisms are using a proteomic approach behind the previously reported effects of cytokine adsorption when compared to the non-treated transplant recipients undergoing EVLP.

6.
Nat Commun ; 14(1): 6097, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773180

RESUMO

There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature´s own anti-infective principles.


Assuntos
Lipopolissacarídeos , Receptores Toll-Like , Animais , Camundongos , Suínos , Lipopolissacarídeos/metabolismo , Receptores Toll-Like/metabolismo , Inflamação/patologia , Peptídeos/química , Peptídeo Hidrolases , Receptores de Lipopolissacarídeos/metabolismo
7.
Cancers (Basel) ; 15(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37568643

RESUMO

Lung cancer represents the leading cause of annual cancer-related deaths worldwide, accounting for 12.9%. The available treatment options for patients who experience disease progression remain limited. Targeted therapeutic approaches are promising but further understanding of the role of genetic alterations in tumorigenesis is imperative. The MET gene has garnered great interest in this regard. The aim of this systematic review was to analyze the findings from multiple studies to provide a comprehensive and unbiased summary of the evidence. A systematic search was conducted in the reputable scientific databases Embase and PubMed, leading to the inclusion of twenty-two articles, following the PRISMA guidelines, elucidating the biological role of MET in lung cancer and targeted therapies. The systematic review was registered in PROSPERO with registration ID: CRD42023437714. MET mutations were detected in 7.6-11.0% of cases while MET gene amplification was observed in 3.9-22.0%. Six studies showed favorable treatment outcomes utilizing MET inhibitors compared to standard treatment or placebo, with increases in PFS and OS ranging from 0.9 to 12.4 and 7.2 to 24.2 months, respectively, and one study reporting an increase in ORR by 17.3%. Furthermore, patients with a higher mutational burden may derive greater benefit from treatment with MET tyrosine kinase inhibitors (TKIs) than those with a lower mutational burden. Conversely, two studies reported no beneficial effect from adjunctive treatment with a MET targeted therapy. Given these findings, there is an urgent need to identify effective therapeutic strategies specifically targeting the MET gene in lung cancer patients.

8.
J Heart Lung Transplant ; 42(10): 1358-1362, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348689

RESUMO

Elevated levels of neutrophil extracellular traps (NETs) have been reported in primary graft dysfunction, making methods to reduce or remove them highly valuable. The mechanisms behind primary graft dysfunction (PGD) remain rudimentarily understood but its relation to higher rates of acute and chronic rejection necessitates the development of preventative treatments. This case series explores the use of a cytokine adsorber during lung transplantation with the focus of reducing circulating nucleosome levels as a measure of NETs. Treated patients showed reduced levels of circulating nucleosomes and remained free from PGD and histopathological signs of acute rejection at 1- and 3-month post-transplant. In contrast, patients without the adsorber experienced higher levels of circulating nucleosomes, PGD grades 1 and 3, and histopathological signs of acute rejection. Using a cytokine adsorber during transplantation may provide a reduced systemic inflammatory state with lower levels of NETs and consequently support graft acceptance.


Assuntos
Armadilhas Extracelulares , Disfunção Primária do Enxerto , Humanos , Nucleossomos , Neutrófilos , Citocinas , Adsorção
9.
Adv Exp Med Biol ; 1413: 291-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195537

RESUMO

Extracorporeal membrane oxygenation (ECMO) occupies an increasingly important position in the clinic for the management of cardiac and/or pulmonary failure. As a rescue therapy, ECMO can support patients following respiratory or cardiac compromise to act as a bridge to recovery, to decision, or to transplant. This chapter reviews briefly the history of ECMO implementation as well as device modes, from veno-arterial, veno-venous, veno-arterial-venous, and veno-venous-arterial set-ups. The importance of acknowledging complications that can arise in each of these modes cannot be overlooked. Both bleeding and thrombosis are inherent risks to the use of ECMO and the existing strategies for management are reviewed. The device also elicits an inflammatory response, and the use of extracorporeal approaches can lead to infection, both of which are important to examine when reflecting how ECMO can be successfully implemented in patients. This chapter both discusses the understanding of these various complications and highlights the need for future research.


Assuntos
Oxigenação por Membrana Extracorpórea , Insuficiência Respiratória , Humanos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Coração , Insuficiência Respiratória/terapia
10.
Respir Res ; 24(1): 145, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259141

RESUMO

Mesenchymal stem cells (MSCs) have been studied for their potential benefits in treating acute respiratory distress syndrome (ARDS) and have reported mild effects when trialed within human clinical trials. MSCs have been investigated in preclinical models with efficacy when administered at the time of lung injury. Human integrin α10ß1-selected adipose tissue-derived MSCs (integrin α10ß1-MSCs) have shown immunomodulatory and regenerative effects in various disease models. We hypothesized that integrin α10ß1 selected-MSCs can be used to treat a sepsis-induced ARDS in a porcine model when administering cells after established injury rather than simultaneously. This was hypothesized to reflect a clinical picture of treatment with MSCs in human ARDS. 12 pigs were randomized to the treated or placebo-controlled group prior to the induction of mild to moderate ARDS via lipopolysaccharide administration. The treated group received 5 × 106 cells/kg integrin α10ß1-selected MSCs and both groups were followed for 12 h. ARDS was confirmed with blood gases and retrospectively with histological changes. After intervention, the treated group showed decreased need for inotropic support, fewer signs of histopathological lung injury including less alveolar wall thickening and reduction of the hypercoagulative disease state. The MSC treatment was not associated with adverse events over the monitoring period. This provides new opportunities to investigate integrin α10ß1-selected MSCs as a treatment for a disease which does not yet have any definitive therapeutic options.


Assuntos
Lesão Pulmonar , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Animais , Integrinas , Síndrome do Desconforto Respiratório/diagnóstico , Estudos Retrospectivos , Suínos
11.
Clin Proteomics ; 20(1): 13, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36967377

RESUMO

BACKGROUND: SARS-CoV-2 has been shown to predominantly infect the airways and the respiratory tract and too often have an unpredictable and different pathologic pattern compared to other respiratory diseases. Current clinical diagnostical tools in pulmonary medicine expose patients to harmful radiation, are too unspecific or even invasive. Proteomic analysis of exhaled breath particles (EBPs) in contrast, are non-invasive, sample directly from the pathological source and presents as a novel explorative and diagnostical tool. METHODS: Patients with PCR-verified COVID-19 infection (COV-POS, n = 20), and patients with respiratory symptoms but with > 2 negative polymerase chain reaction (PCR) tests (COV-NEG, n = 16) and healthy controls (HCO, n = 12) were prospectively recruited. EBPs were collected using a "particles in exhaled air" (PExA 2.0) device. Particle per exhaled volume (PEV) and size distribution profiles were compared. Proteins were analyzed using liquid chromatography-mass spectrometry. A random forest machine learning classification model was then trained and validated on EBP data achieving an accuracy of 0.92. RESULTS: Significant increases in PEV and changes in size distribution profiles of EBPs was seen in COV-POS and COV-NEG compared to healthy controls. We achieved a deep proteome profiling of EBP across the three groups with proteins involved in immune activation, acute phase response, cell adhesion, blood coagulation, and known components of the respiratory tract lining fluid, among others. We demonstrated promising results for the use of an integrated EBP biomarker panel together with particle concentration for diagnosis of COVID-19 as well as a robust method for protein identification in EBPs. CONCLUSION: Our results demonstrate the promising potential for the use of EBP fingerprints in biomarker discovery and for diagnosing pulmonary diseases, rapidly and non-invasively with minimal patient discomfort.

12.
Respir Res ; 23(1): 369, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544145

RESUMO

BACKGROUND: Screening decreases mortality among lung cancer patients but is not widely implemented, thus there is an unmet need for an easily accessible non-invasive method to enable early diagnosis. Particles in exhaled air offer a promising such diagnostic tool. We investigated the validity of a particles in exhaled air device (PExA) to measure the particle flow rate (PFR) and collect exhaled breath particles (EBP) to diagnose primary lung adenocarcinoma (LUAD). METHODS: Seventeen patients listed for resection of LUAD stages IA-IIIA and 18 non-cancer surgical control patients were enrolled. EBP were collected before and after surgery for LUAD, and once for controls. Proteomic analysis was carried out using a proximity extension assay technology. Results were validated in both plasma from the same cohort and with microarray data from healthy lung tissue and LUAD tissue in the GSE10072 dataset. RESULTS: Of the 92 proteins analyzed, levels of five proteins in EBP were significantly higher in the LUAD patients compared to controls. Levels of phospholipid transfer protein (PLTP) and hepatocyte growth factor receptor (MET) decreased in LUAD patients after surgery compared to control patients. PFR was significantly higher in the LUAD cohort at all timepoints compared to the control group. MET in plasma correlated significantly with MET in EBP. CONCLUSION: Collection of EBP and measuring of PFR has never been performed in patients with LUAD. In the present study PFR alone could distinguish between LUAD and patients without LUAD. PLTP and MET were identified as potential biomarkers to evaluate successful tumor excision.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteínas de Transferência de Fosfolipídeos , Humanos , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/cirurgia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-met/metabolismo
13.
Nat Commun ; 13(1): 4173, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882835

RESUMO

Despite improvements, lung transplantation remains hampered by both a scarcity of donor organs and by mortality following primary graft dysfunction (PGD). Since acute respiratory distress syndrome (ARDS) limits donor lungs utilization, we investigated cytokine adsorption as a means of treating ARDS donor lungs. We induced mild to moderate ARDS using lipopolysaccharide in 16 donor pigs. Lungs were then treated with or without cytokine adsorption during ex vivo lung perfusion (EVLP) and/or post-transplantation using extracorporeal hemoperfusion. The treatment significantly decreased cytokine levels during EVLP and decreased levels of immune cells post-transplantation. Histology demonstrated fewer signs of lung injury across both treatment periods and the incidence of PGD was significantly reduced among treated animals. Overall, cytokine adsorption was able to restore lung function and reduce PGD in lung transplantation. We suggest this treatment will increase the availability of donor lungs and increase the tolerability of donor lungs in the recipient.


Assuntos
Transplante de Pulmão , Disfunção Primária do Enxerto , Síndrome do Desconforto Respiratório , Adsorção , Animais , Citocinas , Pulmão , Transplante de Pulmão/efeitos adversos , Preservação de Órgãos , Perfusão , Disfunção Primária do Enxerto/epidemiologia , Disfunção Primária do Enxerto/prevenção & controle , Suínos , Doadores de Tecidos
14.
Curr Transplant Rep ; 9(3): 160-172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601346

RESUMO

Purpose of Review: This article reviews controversial questions within the field of lung transplantation, with a focus on data generated within the last 3 years. We aim to summarize differing opinions on a selection of topics, including bridge-to-transplantation, intraoperative machine circulatory support, bronchial anastomosis, size mismatch, delayed chest closure, and ex vivo lung perfusion. Recent Findings: With the growing rate of lung transplantations worldwide and increasing numbers of patients placed on waiting lists, the importance of determining best practices has only increased in recent years. Factors which promote successful outcomes have been identified across all the topics, with certain approaches promoted, such as ambulation in bridge-to-transplant and widespread intraoperative ECMO as machine support. Summary: While great strides have been made in the operative procedures involved in lung transplantation, there are still key questions to be answered. The consensus which can be reached will be instrumental in further improving outcomes in recipients.

15.
Stem Cell Res Ther ; 12(1): 542, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654486

RESUMO

BACKGROUND: Graft-contaminating tumor cells correlate with inferior outcome in high-risk neuroblastoma patients undergoing hematopoietic stem cell transplantation and can contribute to relapse. Motivated by the potential therapeutic benefit of tumor cell removal as well as the high prognostic and diagnostic value of isolated circulating tumor cells from stem cell grafts, we established a label-free acoustophoresis-based microfluidic technology for neuroblastoma enrichment and removal from peripheral blood progenitor cell (PBPC) products. METHODS: Neuroblastoma patient-derived xenograft (PDX) cells were spiked into PBPC apheresis samples as a clinically relevant model system. Cells were separated by ultrasound in an acoustophoresis microchip and analyzed for recovery, purity and function using flow cytometry, quantitative real-time PCR and cell culture. RESULTS: PDX cells and PBPCs showed distinct size distributions, which is an important parameter for efficient acoustic separation. Acoustic cell separation did not affect neuroblastoma cell growth. Acoustophoresis allowed to effectively separate PDX cells from spiked PBPC products. When PBPCs were spiked with 10% neuroblastoma cells, recoveries of up to 98% were achieved for PDX cells while more than 90% of CD34+ stem and progenitor cells were retained in the graft. At clinically relevant tumor cell contamination rates (0.1 and 0.01% PDX cells in PBPCs), neuroblastoma cells were depleted by more than 2-log as indicated by RT-PCR analysis of PHOX2B, TH and DDC genes, while > 85% of CD34+ cells could be retained in the graft. CONCLUSION: These results demonstrate the potential use of label-free acoustophoresis for PBPC processing and its potential to develop label-free, non-contact tumor cell enrichment and purging procedures for future clinical use.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neuroblastoma , Células-Tronco de Sangue Periférico , Antígenos CD34 , Separação Celular , Células-Tronco Hematopoéticas , Xenoenxertos , Humanos , Neuroblastoma/terapia
16.
Cells ; 11(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011653

RESUMO

Since its advent in the 1990's, ex vivo lung perfusion (EVLP) has been studied and implemented as a tool to evaluate the quality of a donor organ prior to transplantation. It provides an invaluable window of opportunity for therapeutic intervention to render marginal lungs viable for transplantation. This ultimately aligns with the need of the lung transplant field to increase the number of available donor organs given critical shortages. As transplantation is the only option for patients with end-stage lung disease, advancements in technology are needed to decrease wait-list time and mortality. This review summarizes the results from the application of EVLP as a therapeutic intervention and focuses on the use of the platform with regard to cell therapies, cell product therapies, and cytokine filtration among other technologies. This review will summarize both the clinical and translational science being conducted in these aspects and will highlight the opportunities for EVLP to be developed as a powerful tool to increase the donor lung supply.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Citocinas/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/terapia , Perfusão , Adsorção , Animais , Vesículas Extracelulares/metabolismo , Humanos
17.
Cytometry A ; 99(5): 476-487, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32542988

RESUMO

Culture-expanded mesenchymal stromal cells (MSCs) are promising candidates for clinical cell-based therapies. MSC products are heterogeneous and we therefore investigated whether acoustophoresis, an ultrasound-based separation technology, could be used for the label-free enrichment of functionally different MSC populations. Acoustophoresis uses an ultrasonic standing wave field in a microchannel that differentially affects the movement of cells depending on their acoustophysical properties, such as size, density, and compressibility. Human bone marrow (BM) MSCs were generated by standard adherent culture in xeno-free medium and separated by microchip acoustophoresis. MSCs with up to 20% higher proliferation and 1.7-fold increased clonogenic potential were enriched in the side outlet of the chip compared to the input sample. These cells were significantly smaller (average diameter 14.5 ± 0.4 µm) compared to the center outlet fraction (average diameter 17.1 ± 0.6 µm) and expressed higher levels of genes related to proliferation and stem cell properties (i.e., Ki-67 [1.9-fold], Nanog1 [6.65-fold], Oct4 [2.9-fold], and CXCL12 [1.8-fold], n = 3) in the side outlet compared to input. Fractions of MSCs in G0 /G1 cell cycle phase were significantly enriched in the side fraction and an up to 2.8-fold increase of cells in S/G2 /M phases were observed in center fractions compared to side fractions and 1.3-fold increased compared to the input sample. Acoustophoresis did not compromise MSC phenotype, proliferation, clonogenic capacity, and viability (generally 87-98%), nor did it affect differentiation or immunomodulatory capacities. These results demonstrate that label-free acoustic separation can enrich functionally different MSC subsets which can potentially be employed to produce better-defined stromal cell products from cultured MSCs. Hence, acoustophoresis is a potentially promising separation technology to provide improved cell products for research and possible future clinical use. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Assuntos
Células-Tronco Mesenquimais , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Separação Celular , Células Cultivadas , Humanos , Imunomodulação
18.
Sci Rep ; 9(1): 8777, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217534

RESUMO

Processing of complex cell preparations such as blood and peripheral blood progenitor cell (PBPC) transplants using label-free technologies is challenging. Transplant-contaminating neuroblastoma cells (NBCs) can contribute to relapse, and we therefore aimed to provide proof-of-principle evidence that label-free acoustophoretic separation can be applied for diagnostic NBC enrichment and removal ("purging") from human blood and PBPC products. Neuroblastoma cells spiked into blood and PBPC preparations served as model systems. Acoustophoresis enabled to enrich NBCs from mononuclear peripheral blood cells and PBPC samples with recovery rates of up to 60-97%. When aiming at high purity, NBC purities of up to 90% were realized, however, compromising recovery. Acoustophoretic purging of PBPC products allowed substantial tumour cell depletion of 1.5-2.3 log. PBPC loss under these conditions was considerable (>43%) but could be decreased to less than 10% while still achieving NBC depletion rates of 60-80%. Proliferation of cells was not affected by acoustic separation. These results provide first evidence that NBCs can be acoustically separated from blood and stem cell preparations with high recovery and purity, thus indicating that acoustophoresis is a promising technology for the development of future label-free, non-contact cell processing of complex cell products.


Assuntos
Separação Celular , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Neuroblastoma/patologia , Células-Tronco de Sangue Periférico/patologia , Linhagem Celular Tumoral , Humanos , Neuroblastoma/metabolismo , Células-Tronco de Sangue Periférico/metabolismo
19.
Lab Chip ; 19(8): 1406-1416, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30869100

RESUMO

Multiplex separation of mixed cell samples is required in a variety of clinical and research applications. Herein, we present an acoustic microchip with multiple outlets and integrated pre-alignment channel to enable high performance and label-free separation of three different cell or particle fractions simultaneously at high sample throughput. By implementing a new cooling system for rigorous temperature control and minimal acoustic energy losses, we were able to operate the system isothermally and sort suspensions of 3, 5 and 7 µm beads with high efficiencies (>95.4%) and purities (>96.3%) at flow rates up to 500 µL min-1 corresponding to a throughput of ∼2.5 × 106 beads per min. Also, human viable white blood cells were successfully fractionated into lymphocytes, monocytes and granulocytes with high purities of 96.5 ± 1.6%, 71.8 ± 10.1% and 98.8 ± 0.5%, respectively, as well as high efficiencies (96.8 ± 3.3%, 66.7 ± 3.2% and 99.0 ± 0.7%) at flow rates up to 100 µL min-1 (∼100 000 cells per min). By increasing the flow rate up to 300 µL min-1 (∼300 000 cells per min) both lymphocytes and granulocytes were still recovered with high purities (92.8 ± 1.9%, 98.2 ± 1 .0%), whereas the monocyte purity decreased to 20.9 ± 10.3%. The proposed isothermal multiplex acoustophoresis platform offers efficient fractionation of complex samples in a label-free and continuous manner at thus far unreached high sample throughput rates.


Assuntos
Acústica , Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Leucócitos/citologia , Sobrevivência Celular , Eletroforese , Humanos , Microesferas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...