Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Emerg Microbes Infect ; 12(2): 2246594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555275

RESUMO

Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (C2-C5a). Our lead direct-acting antiviral (DAA), C5a, is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro. The compounds C2-C5a exhibit broad-spectrum activity against Omicron subvariants (BA.5, BQ.1.1, and XBB.1.5) and seasonal human coronavirus-229E infection in human cells. Notably, C5a has median effective concentrations of 30-50 nM against BQ.1.1 and XBB.1.5 in two different human cell lines. X-ray crystallography has confirmed the unique binding modes of C2-C5a to the 3CLpro, which can limit virus cross-resistance to emerging Paxlovid-resistant variants. We tested the effect of C5a with two of our newly discovered host-directed antivirals (HDAs): N-0385, a TMPRSS2 inhibitor, and bafilomycin D (BafD), a human vacuolar H+-ATPase [V-ATPase] inhibitor. We demonstrated a synergistic action of C5a in combination with N-0385 and BafD against Omicron BA.5 infection in human Calu-3 lung cells. Our findings underscore that a SARS-CoV-2 multi-targeted treatment for circulating Omicron subvariants based on DAAs (C5a) and HDAs (N-0385 or BafD) can lead to therapeutic benefits by enhancing treatment efficacy. Furthermore, the high-resolution structures of SARS-CoV-2 3CLpro in complex with C2-C5a will facilitate future rational optimization of our novel broad-spectrum active-site-directed 3C-like protease inhibitors.


Assuntos
COVID-19 , Hepatite C Crônica , Humanos , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , SARS-CoV-2
3.
Antiviral Res ; 209: 105484, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503013

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health crisis. The reduced efficacy of therapeutic monoclonal antibodies against emerging SARS-CoV-2 variants of concern (VOCs), such as omicron BA.5 subvariants, has underlined the need to explore a novel spectrum of antivirals that are effective against existing and evolving SARS-CoV-2 VOCs. To address the need for novel therapeutic options, we applied cell-based high-content screening to a library of natural products (NPs) obtained from plants, fungi, bacteria, and marine sponges, which represent a considerable diversity of chemical scaffolds. The antiviral effect of 373 NPs was evaluated using the mNeonGreen (mNG) reporter SARS-CoV-2 virus in a lung epithelial cell line (Calu-3). The screening identified 26 NPs with half-maximal effective concentrations (EC50) below 50 µM against mNG-SARS-CoV-2; 16 of these had EC50 values below 10 µM and three NPs (holyrine A, alotaketal C, and bafilomycin D) had EC50 values in the nanomolar range. We demonstrated the pan-SARS-CoV-2 activity of these three lead antivirals against SARS-CoV-2 highly transmissible Omicron subvariants (BA.5, BA.2 and BA.1) and highly pathogenic Delta VOCs in human Calu-3 lung cells. Notably, holyrine A, alotaketal C, and bafilomycin D, are potent nanomolar inhibitors of SARS-CoV-2 Omicron subvariants BA.5 and BA.2. The pan-SARS-CoV-2 activity of alotaketal C [protein kinase C (PKC) activator] and bafilomycin D (V-ATPase inhibitor) suggest that these two NPs are acting as host-directed antivirals (HDAs). Future research should explore whether PKC regulation impacts human susceptibility to and the severity of SARS-CoV-2 infection, and it should confirm the important role of human V-ATPase in the VOC lifecycle. Interestingly, we observed a synergistic action of bafilomycin D and N-0385 (a highly potent inhibitor of human TMPRSS2 protease) against Omicron subvariant BA.2 in human Calu-3 lung cells, which suggests that these two highly potent HDAs are targeting two different mechanisms of SARS-CoV-2 entry. Overall, our study provides insight into the potential of NPs with highly diverse chemical structures as valuable inspirational starting points for developing pan-SARS-CoV-2 therapeutics and for unravelling potential host factors and pathways regulating SARS-CoV-2 VOC infection including emerging omicron BA.5 subvariants.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Adenosina Trifosfatases , Antivirais/farmacologia , Antivirais/uso terapêutico , Produtos Biológicos/farmacologia , Glicoproteína da Espícula de Coronavírus
4.
Viruses ; 14(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366515

RESUMO

BACKGROUND: Investigating antibody titers in individuals who have been both naturally infected with SARS-CoV-2 and vaccinated can provide insight into antibody dynamics and correlates of protection over time. METHODS: Human coronavirus (HCoV) IgG antibodies were measured longitudinally in a prospective cohort of qPCR-confirmed, COVID-19 recovered individuals (k = 57) in British Columbia pre- and post-vaccination. SARS-CoV-2 and endemic HCoV antibodies were measured in serum collected between Nov. 2020 and Sept. 2021 (n = 341). Primary analysis used a linear mixed-effects model to understand the effect of single dose vaccination on antibody concentrations adjusting for biological sex, age, time from infection and vaccination. Secondary analysis investigated the cumulative incidence of high SARS-CoV-2 anti-spike IgG seroreactivity equal to or greater than 5.5 log10 AU/mL up to 105 days post-vaccination. No re-infections were detected in vaccinated participants, post-vaccination by qPCR performed on self-collected nasopharyngeal specimens. RESULTS: Bivariate analysis (complete data for 42 participants, 270 samples over 472 days) found SARS-CoV-2 spike and RBD antibodies increased 14-56 days post-vaccination (p < 0.001) and vaccination prevented waning (regression coefficient, B = 1.66 [95%CI: 1.45-3.46]); while decline of nucleocapsid antibodies over time was observed (regression coefficient, B = -0.24 [95%CI: -1.2-(-0.12)]). A positive association was found between COVID-19 vaccination and endemic human ß-coronavirus IgG titer 14-56 days post vaccination (OC43, p = 0.02 & HKU1, p = 0.02). On average, SARS-CoV-2 anti-spike IgG concentration increased in participants who received one vaccine dose by 2.06 log10 AU/mL (95%CI: 1.45-3.46) adjusting for age, biological sex, and time since infection. Cumulative incidence of high SARS-CoV-2 spike antibodies (>5.5 log10 AU/mL) was 83% greater in vaccinated compared to unvaccinated individuals. CONCLUSIONS: Our study confirms that vaccination post-SARS-CoV-2 infection provides multiple benefits, such as increasing anti-spike IgG titers and preventing decay up to 85 days post-vaccination.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Formação de Anticorpos , SARS-CoV-2 , Estudos Prospectivos , Vacinas contra COVID-19 , Anticorpos Antivirais , Vacinação , Imunoglobulina G
5.
IEEE Trans Med Imaging ; 41(11): 3128-3145, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35622798

RESUMO

Drug repurposing can accelerate the identification of effective compounds for clinical use against SARS-CoV-2, with the advantage of pre-existing clinical safety data and an established supply chain. RNA viruses such as SARS-CoV-2 manipulate cellular pathways and induce reorganization of subcellular structures to support their life cycle. These morphological changes can be quantified using bioimaging techniques. In this work, we developed DEEMD: a computational pipeline using deep neural network models within a multiple instance learning framework, to identify putative treatments effective against SARS-CoV-2 based on morphological analysis of the publicly available RxRx19a dataset. This dataset consists of fluorescence microscopy images of SARS-CoV-2 non-infected cells and infected cells, with and without drug treatment. DEEMD first extracts discriminative morphological features to generate cell morphological profiles from the non-infected and infected cells. These morphological profiles are then used in a statistical model to estimate the applied treatment efficacy on infected cells based on similarities to non-infected cells. DEEMD is capable of localizing infected cells via weak supervision without any expensive pixel-level annotations. DEEMD identifies known SARS-CoV-2 inhibitors, such as Remdesivir and Aloxistatin, supporting the validity of our approach. DEEMD can be explored for use on other emerging viruses and datasets to rapidly identify candidate antiviral treatments in the future. Our implementation is available online at https://www.github.com/Sadegh-Saberian/DEEMD.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo
6.
Nature ; 605(7909): 340-348, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344983

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern1,2. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern3,4. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle5,6. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 106 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids7. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Inibidores de Serina Proteinase , Animais , COVID-19/prevenção & controle , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
7.
ACS Appl Mater Interfaces ; 14(1): 49-56, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978405

RESUMO

The development of low-cost, non-toxic, scalable antimicrobial textiles is needed to address the spread of deadly pathogens. Here, we report a polysiloxane textile coating that possesses two modes of antimicrobial inactivation, passive contact inactivation through amine/imine functionalities and active photodynamic inactivation through the generation of reactive oxygen species (ROS). This material can be coated and cross-linked onto natural and synthetic textiles through a simple soak procedure, followed by UV cure to afford materials exhibiting no aqueous leaching and only minimal leaching in organic solvents. This coating minimally impacts the mechanical properties of the fabric while also imparting hydrophobicity. Passive inactivation of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) is achieved with >98% inactivation after 24 h, with a 23× and 3× inactivation rate increase against E. coli and MRSA, respectively, when green light is used to generate ROS. Up to 90% decrease in the infectivity of SARS-CoV-2 after 2 h of irradiated incubation with the material is demonstrated. These results show that modifying textiles with dual-functional polymers results in robust and highly antimicrobial materials that are expected to find widespread use in combating the spread of deadly pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Polímeros/química , SARS-CoV-2/efeitos dos fármacos , Têxteis/análise , Anti-Infecciosos/química , COVID-19/prevenção & controle , COVID-19/virologia , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2/isolamento & purificação , Têxteis/toxicidade , Raios Ultravioleta
8.
Sci Rep ; 11(1): 9986, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976241

RESUMO

Most individuals chronically infected with hepatitis C virus (HCV) are asymptomatic during the initial stages of infection and therefore the precise timing of infection is often unknown. Retrospective estimation of infection duration would improve existing surveillance data and help guide treatment. While intra-host viral diversity quantifications such as Shannon entropy have previously been utilized for estimating duration of infection, these studies characterize the viral population from only a relatively short segment of the HCV genome. In this study intra-host diversities were examined across the HCV genome in order to identify the region most reflective of time and the degree to which these estimates are influenced by high-risk activities including those associated with HCV acquisition. Shannon diversities were calculated for all regions of HCV from 78 longitudinally sampled individuals with known seroconversion timeframes. While the region of the HCV genome most accurately reflecting time resided within the NS3 gene, the gene region with the highest capacity to differentiate acute from chronic infections was identified within the NS5b region. Multivariate models predicting duration of infection from viral diversity significantly improved upon incorporation of variables associated with recent public, unsupervised drug use. These results could assist the development of strategic population treatment guidelines for high-risk individuals infected with HCV and offer insights into variables associated with a likelihood of transmission.


Assuntos
Usuários de Drogas , Variação Genética , Genoma Viral , Hepacivirus/genética , Hepatite C/virologia , Humanos , Modelos Lineares , Estudos Prospectivos
9.
bioRxiv ; 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33972944

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced against emerging variants of concern (VOCs) 1,2 . Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against VOCs 3,4 . Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs), such as TMPRSS2, whose essential role in the virus lifecycle is responsible for the cleavage and priming of the viral spike protein 5-7 . Here, we identify and characterize a small-molecule compound, N-0385, as the most potent inhibitor of TMPRSS2 reported to date. N-0385 exhibited low nanomolar potency and a selectivity index of >10 6 at inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids 8 . Importantly, N-0385 acted as a broad-spectrum coronavirus inhibitor of two SARS-CoV-2 VOCs, B.1.1.7 and B.1.351. Strikingly, single daily intranasal administration of N-0385 early in infection significantly improved weight loss and clinical outcomes, and yielded 100% survival in the severe K18-human ACE2 transgenic mouse model of SARS-CoV-2 disease. This demonstrates that TTSP-mediated proteolytic maturation of spike is critical for SARS-CoV-2 infection in vivo and suggests that N-0385 provides a novel effective early treatment option against COVID-19 and emerging SARS-CoV-2 VOCs.

10.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114346

RESUMO

Hijacking and manipulation of host cell biosynthetic pathways by human enveloped viruses are essential for the viral lifecycle. Flaviviridae members, including hepatitis C, dengue and Zika viruses, extensively manipulate host lipid metabolism, underlining the importance of lipid droplets (LDs) in viral infection. LDs are dynamic cytoplasmic organelles that can act as sequestration platforms for a unique subset of host and viral proteins. Transient recruitment and mobilization of proteins to LDs during viral infection impacts host-cell biological properties, LD functionality and canonical protein functions. Notably, recent studies identified LDs in the nucleus and also identified that LDs are transported extracellularly via an autophagy-mediated mechanism, indicating a novel role for autophagy in Flaviviridae infections. These developments underline an unsuspected diversity and localization of LDs and potential moonlighting functions of LD-associated proteins during infection. This review summarizes recent breakthroughs concerning the LD hijacking activities of hepatitis C, dengue and Zika viruses and potential roles of cytoplasmic, nuclear and extracellular LD-associated viral proteins during infection.


Assuntos
Flaviviridae/patogenicidade , Gotículas Lipídicas/metabolismo , Proteínas Virais/metabolismo , Animais , Autofagia , Núcleo Celular/metabolismo , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Espaço Extracelular/metabolismo , Flaviviridae/metabolismo , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Humanos , Gotículas Lipídicas/virologia , Zika virus/metabolismo , Zika virus/patogenicidade
11.
Sci Rep ; 9(1): 16433, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712570

RESUMO

In 2018, the World Health Organization identified the Zika virus (ZIKV) as a pathogen that should be prioritized for public health research due to its epidemic potential. In this study, whole-genome sequencing (WGS) of travel-acquired ZIKV infections was used to examine the limitations of phylogenetic analysis. WGS and phylogenetic analysis were performed to investigate geographic clustering of samples from five Canadians with travel-acquired ZIKV infections and to assess the limitations of phylogenetic analysis of ZIKV sequences using a phylogenetic cluster approach. Genomic variability of ZIKV samples was assessed and for context, compared with hepatitis C virus (HCV) samples. Phylogenetic analysis confirmed the suspected region of ZIKV infection for one of five samples and one sample failed to cluster with sequences from its suspected country of infection. Travel-acquired ZIKV samples depicted low genomic variability relative to HCV samples. A floating patristic distance threshold classified all pre-2000 ZIKV sequences into separate clusters, while only Cambodian, Peruvian, Malaysian, and South Korean sequences were similarly classifiable. While phylogenetic analysis of ZIKV data can identify the broad geographical region of ZIKV infection, ZIKV's low genomic variability is likely to limit precise interpretations of phylogenetic analysis of the origins of travel-related cases.


Assuntos
Genoma Viral , Filogenia , Doença Relacionada a Viagens , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/classificação , Zika virus/genética , Variação Genética , Saúde Global , Humanos , Filogeografia , Vigilância em Saúde Pública , Viagem , Sequenciamento Completo do Genoma
12.
Open Forum Infect Dis ; 6(3): ofz060, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30895202

RESUMO

BACKGROUND: Integrase strand transfer inhibitors (INSTIs) are highly efficacious and well tolerated antiretrovirals with fewer adverse side-effects relative to other classes of antiretrovirals. The use of INSTIs raltegravir, elvitegravir, and dolutegravir has increased dramatically over recent years. However, there is limited information about the evolution and prevalence of INSTI resistance mutations in clinical human immunodeficiency virus populations. METHODS: Human immunodeficiency virus-1-positive individuals ≥19 years were included if they received ≥1 dispensed prescription of antiretroviral therapy (ART) in British Columbia between 2009 and 2016 (N = 9358). Physician-ordered drug resistance tests were analyzed and protease inhibitor (PI), reverse-transcriptase inhibitor (RT), and INSTI resistance were defined as having ≥1 sample with a combined, cumulative score ≥30 by Stanford HIV Drug Resistance Algorithm version 7.0.1. RESULTS: Although most ART-treated individuals were tested for PI and RT resistance, INSTI resistance testing lagged behind the uptake of INSTIs among INSTI-treated individuals (11% in 2009; 34% in 2016). The prevalence of INSTI resistance was relatively low, but it increased from 1 to 7 per 1000 ART-treated individuals between 2009 and 2016 (P < .0001, R2 = 0.98). Integrase strand transfer inhibitor resistance mutations increased at integrase codons 66, 97, 140, 148, 155, and 263. CONCLUSIONS: The prevalence of INSTI resistance remains low compared with PI and RT resistance in ART-treated populations but is expanding with increased INSTI use.

13.
Infect Genet Evol ; 69: 76-84, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30654177

RESUMO

Hepatitis C virus (HCV) mixed genotype infections can affect treatment outcomes and may have implications for vaccine design and disease progression. Previous studies demonstrate 0-39% of high-risk, HCV-infected individuals harbor mixed genotypes however standardized, sensitive methods of detection are lacking. This study compared PCR amplicon, random primer (RP), and probe enrichment (PE)-based deep sequencing methods coupled with a custom sequence analysis pipeline to detect multiple HCV genotypes. Mixed infection cutoff values, based on HCV read depth and coverage, were identified using receiver operating characteristic curve analysis. The methodology was validated using artificially mixed genotype samples and then applied to two clinical trials of HCV treatment in high-risk individuals (ACTIVATE, 114 samples from 90 individuals; DARE-C II, 26 samples from 18 individuals) and a cohort of HIV/HCV co-infected individuals (Canadian Coinfection Cohort (CCC), 3 samples from 2 individuals with suspected mixed genotype infections). Amplification bias of genotype (G)1b, G2, G3 and G5 was observed in artificially mixed samples using the PCR method while no genotype bias was observed using RP and PE. RP and PE sequencing of 140 ACTIVATE and DARE-C II samples identified the following primary genotypes: 15% (n = 21) G1a, 76% (n = 106) G3, and 9% (n = 13) G2. Sequencing of ACTIVATE and DARE-C II demonstrated, on average, 2% and 1% of HCV reads mapping to a second genotype using RP and PE, respectively, however none passed the mixed infection cutoff criteria and phylogenetics confirmed no mixed infections. From CCC, one mixed infection was confirmed while the other was determined to be a recombinant genotype. This study underlines the risk for false identification of mixed HCV infections and stresses the need for standardized methods to improve prevalence estimates and to understand the impact of mixed infections for management and elimination of HCV.


Assuntos
Genótipo , Hepacivirus/classificação , Hepacivirus/genética , Hepatite C/diagnóstico , Hepatite C/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Coinfecção/virologia , Biologia Computacional/métodos , Genes Virais , Genoma Viral , Genômica/métodos , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Humanos , Filogenia , RNA Viral , Curva ROC
14.
EBioMedicine ; 23: 68-78, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28864162

RESUMO

In patients with chronic hepatitis C virus (HCV) infection, viral hijacking of the host-cell biosynthetic pathways is associated with altered lipid metabolism, which contributes to disease progression and may influence antiviral response. We investigated the molecular interplay among four key regulators of lipid homeostasis [microRNA (miR)-122, miR-24, miR-223, and proprotein convertase subtilisin/kexin type 9 (PCSK9)] in HCV-infected patients (n=72) who achieved a treatment-based viral cure after interferon-based therapy with first-generation direct-acting antivirals. Real-time PCR was used to quantify microRNA plasma levels, and ELISA assays were used to determine plasma concentrations of PCSK9. We report that levels of miR-24 and miR-223 significantly increased in patients achieving sustained virologic response (SVR), whereas the levels of miR-122, a liver-specific cofactor for HCV infection, decreased in these patients. PCSK9 concentrations were significantly increased in SVRs, suggesting that PCSK9 may help impede viral infection. The modulatory effect of PCSK9 on HCV infection was also demonstrated in the context of HCV-infected Huh-7.5.1 cells employing recombinant human PCSK9 mutants. Together, these results provide insights into a novel coordinated interplay among three important molecular players in lipid homeostasis - circulating miR-24, miR-223 and PCSK9 - whose regulation is affected by HCV infection and treatment-based viral cure.


Assuntos
Hepacivirus , Hepatite C/genética , Hepatite C/metabolismo , Homeostase , Metabolismo dos Lipídeos , MicroRNAs/genética , Pró-Proteína Convertase 9/genética , Análise de Variância , Antivirais/farmacologia , Antivirais/uso terapêutico , Biomarcadores , Linhagem Celular , Células Cultivadas , MicroRNA Circulante , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/genética , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Humanos , Masculino , Modelos Moleculares , Conformação Molecular , Mutação , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/metabolismo , Ligação Proteica , Receptores de LDL/química , Receptores de LDL/metabolismo , Projetos de Pesquisa , Carga Viral
15.
J Virol Methods ; 244: 17-22, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28219761

RESUMO

Hepatitis C virus (HCV) infection affects millions of people and leads to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Treatment regimen selection requires HCV genotype (Gt) and Gt 1 subtype determination. Use of a laboratory developed, reverse transcription (RT)-PCR assay was explored as a low-cost, high-throughput screening approach for the major HCV genotypes and subtypes in North America. A commercial line probe assay (LiPA) was used for comparison. Sequencing and/or an alternative PCR assay were used for discordant analyses. Testing of 155 clinical samples revealed that a paired, duplex real-time RT-PCR assay that targets Gts 1a and 3a in one reaction and Gts 1b and 2 in another had 95% overall sensitivity and individual Gt sensitivity and specificity of 98-100% and 85-98%, respectively. The RT-PCR assay detected mixed HCV Gts in clinical and spiked samples and no false-positive reactions occurred with rare Gts 3b, 4, 5, or 6. Implementation of the RT-PCR assay, with some reflex LiPA testing, would cost only a small portion of the cost of using LiPA alone, and can also save 1.5h of hands-on time. The use of a laboratory developed RT-PCR assay for HCV genotyping has the potential to reduce cost and labour burdens in high-volume testing settings.


Assuntos
Genótipo , Técnicas de Genotipagem/métodos , Hepacivirus/classificação , Hepacivirus/genética , Hepatite C/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Hepacivirus/isolamento & purificação , Humanos , América do Norte , Sensibilidade e Especificidade
16.
Infect Genet Evol ; 43: 329-37, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27282472

RESUMO

Effective surveillance and treatment strategies are required to control the hepatitis C virus (HCV) epidemic. Phylogenetic analyses are powerful tools for reconstructing the evolutionary history of viral outbreaks and identifying transmission clusters. These studies often rely on Sanger sequencing which typically generates a single consensus sequence for each infected individual. For rapidly mutating viruses such as HCV, consensus sequencing underestimates the complexity of the viral quasispecies population and could therefore generate different phylogenetic tree topologies. Although deep sequencing provides a more detailed quasispecies characterization, in-depth phylogenetic analyses are challenging due to dataset complexity and computational limitations. Here, we apply deep sequencing to a characterized population to assess its ability to identify phylogenetic clusters compared with consensus Sanger sequencing. For deep sequencing, a sample specific threshold determined by the 50th percentile of the patristic distance distribution for all variants within each individual was used to identify clusters. Among seven patristic distance thresholds tested for the Sanger sequence phylogeny ranging from 0.005-0.06, a threshold of 0.03 was found to provide the maximum balance between positive agreement (samples in a cluster) and negative agreement (samples not in a cluster) relative to the deep sequencing dataset. From 77 HCV seroconverters, 10 individuals were identified in phylogenetic clusters using both methods. Deep sequencing analysis identified an additional 4 individuals and excluded 8 other individuals relative to Sanger sequencing. The application of this deep sequencing approach could be a more effective tool to understand onward HCV transmission dynamics compared with Sanger sequencing, since the incorporation of minority sequence variants improves the discrimination of phylogenetically linked clusters.


Assuntos
Genoma Viral , Genótipo , Hepacivirus/genética , Hepatite C Crônica/epidemiologia , Filogenia , Evolução Biológica , Colúmbia Britânica/epidemiologia , Análise por Conglomerados , Variação Genética , Hepacivirus/classificação , Hepatite C Crônica/transmissão , Hepatite C Crônica/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
17.
Lancet Infect Dis ; 16(6): 698-702, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27039040

RESUMO

BACKGROUND: The timing of the initial spread of hepatitis C virus genotype 1a in North America is controversial. In particular, how and when hepatitis C virus reached extraordinary prevalence in specific demographic groups remains unclear. We quantified, using all available hepatitis C virus sequence data and phylodynamic methods, the timing of the spread of hepatitis C virus genotype 1a in North America. METHODS: We screened 45 316 publicly available sequences of hepatitis C virus genotype 1a for location and genotype, and then did phylogenetic analyses of available North American sequences from five hepatitis C virus genes (E1, E2, NS2, NS4B, NS5B), with an emphasis on including as many sequences with early collection dates as possible. We inferred the historical population dynamics of this epidemic for all five gene regions using Bayesian skyline plots. FINDINGS: Most of the spread of genotype 1a in North America occurred before 1965, and the hepatitis C virus epidemic has undergone relatively little expansion since then. The effective population size of the North American epidemic stabilised around 1960. These results were robust across all five gene regions analysed, although analyses of each gene separately show substantial variation in estimates of the timing of the early exponential growth, ranging roughly from 1940 for NS2, to 1965 for NS4B. INTERPRETATION: The expansion of genotype 1a before 1965 suggests that nosocomial or iatrogenic factors rather than past sporadic behavioural risk (ie, experimentation with injection drug use, unsafe tattooing, high risk sex, travel to high endemic areas) were key contributors to the hepatitis C virus epidemic in North America. Our results might reduce stigmatisation around screening and diagnosis, potentially increasing rates of screening and treatment for hepatitis C virus. FUNDING: The Canadian Institutes of Health Research, Michael Smith Foundation for Health Research, and BC Centre for Excellence in HIV/AIDS.


Assuntos
Hepacivirus/genética , Hepatite C/epidemiologia , Filogenia , Genótipo , Hepacivirus/classificação , Hepatite C/transmissão , Hepatite C/virologia , Humanos , Estudos Longitudinais , América do Norte/epidemiologia , Prevalência , RNA Viral , Estudos Retrospectivos , Análise de Sequência de DNA , Fatores de Tempo
18.
J Hepatol ; 64(6): 1247-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26924451

RESUMO

BACKGROUND & AIMS: Understanding HCV transmission among people who inject drugs (PWID) is important for designing prevention strategies. This study investigated whether HCV infection among younger injectors occurs from few or many transmission events from older injectors to younger injectors among PWID in Vancouver, Canada. METHODS: HCV antibody positive participants at enrolment or follow-up (1996-2012) were tested for HCV RNA and sequenced (Core-E2). Time-stamped phylogenetic trees were inferred using Bayesian Evolutionary Analysis Sampling Trees (BEAST). Association of age with phylogeny was tested using statistics implemented in the software Bayesian Tip Significance (BaTS) testing. Factors associated with clustering (maximum cluster age: five years) were identified using logistic regression. RESULTS: Among 699 participants with HCV subtype 1a, 1b, 2b and 3a infection (26% female, 24% HIV+): 21% were younger (<27years), and 10% had recent HCV seroconversion. When inferred cluster age was limited to <5years, 15% (n=108) were in clusters/pairs. Although a moderate degree of segregation was observed between younger and older participants, there was also transmission between age groups. Younger age (<27 vs. >40, AOR: 3.14; 95% CI: 1.54, 6.39), HIV (AOR: 1.97; 95% CI: 1.22, 3.18) and subtype 3a (AOR: 2.12; 95% CI: 1.33, 3.38) were independently associated with clustering. CONCLUSIONS: In this population of PWID from Vancouver, HCV among young injectors was seeded from many transmission events between HCV-infected older and younger injectors. Phylogenetic clustering was associated with younger age and HIV. These data suggest that HCV transmission among PWID is complex, with transmission occurring between and among older and younger PWID.


Assuntos
Hepatite C/transmissão , Abuso de Substâncias por Via Intravenosa/complicações , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia
20.
Drug Alcohol Depend ; 152: 272-6, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977204

RESUMO

BACKGROUND: Among prospective cohorts of people who inject drugs (PWID), phylogenetic clustering of HCV infection has been observed. However, the majority of studies have included older PWID, representing distant transmission events. The aim of this study was to investigate phylogenetic clustering of HCV infection among a cohort of street-involved youth. METHODS: Data were derived from a prospective cohort of street-involved youth aged 14-26 recruited between 2005 and 2012 in Vancouver, Canada (At Risk Youth Study, ARYS). HCV RNA testing and sequencing (Core-E2) were performed on HCV positive participants. Phylogenetic trees were inferred using maximum likelihood methods and clusters were identified using ClusterPicker (Core-E2 without HVR1, 90% bootstrap threshold, 0.05 genetic distance threshold). RESULTS: Among 945 individuals enrolled in ARYS, 16% (n=149, 100% recent injectors) were HCV antibody positive at baseline interview (n=86) or seroconverted during follow-up (n=63). Among HCV antibody positive participants with available samples (n=131), 75% (n=98) had detectable HCV RNA and 66% (n=65, mean age 23, 58% with recent methamphetamine injection, 31% female, 3% HIV+) had available Core-E2 sequences. Of those with Core-E2 sequence, 14% (n=9) were in a cluster (one cluster of three) or pair (two pairs), with all reporting recent methamphetamine injection. Recent methamphetamine injection was associated with membership in a cluster or pair (P=0.009). CONCLUSION: In this study of street-involved youth with HCV infection and recent injecting, 14% demonstrated phylogenetic clustering. Phylogenetic clustering was associated with recent methamphetamine injection, suggesting that methamphetamine drug injection may play an important role in networks of HCV transmission.


Assuntos
Hepatite C/epidemiologia , Hepatite C/virologia , Jovens em Situação de Rua/estatística & dados numéricos , Metanfetamina/administração & dosagem , Filogenia , Abuso de Substâncias por Via Intravenosa/epidemiologia , Abuso de Substâncias por Via Intravenosa/virologia , Adolescente , Adulto , Colúmbia Britânica/epidemiologia , Feminino , Hepatite C/transmissão , Humanos , Injeções , Masculino , Estudos Prospectivos , Automedicação/efeitos adversos , Abuso de Substâncias por Via Intravenosa/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...