Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37177652

RESUMO

The condition of a joint in a human being is prone to wear and several pathologies, particularly in the elderly and athletes. Current means towards assessing the overall condition of a joint to assess for a pathology involve using tools such as X-ray and magnetic resonance imaging, to name a couple. These expensive methods are of limited availability in resource-constrained environments and pose the risk of radiation exposure to the patient. The prospect of acoustic emissions (AEs) presents a modality that can monitor the joints' conditions passively by recording the high-frequency stress waves emitted during their motion. One of the main challenges associated with this sensing method is decoding and linking acquired AE signals to their source event. In this paper, we investigate AEs' use to identify five kinds of joint-wear pathologies using a contrast of expert-based handcrafted features and unsupervised feature learning via deep wavelet decomposition (DWS) alongside 12 machine learning models. The results showed an average classification accuracy of 90 ± 7.16% and 97 ± 3.77% for the handcrafted and DWS-based features, implying good prediction accuracies across the various devised approaches. Subsequent work will involve the potential application of regressions towards estimating the associated stage and extent of a wear condition where present, which can form part of an online system for the condition monitoring of joints in human beings.


Assuntos
Aprendizado Profundo , Humanos , Idoso , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Acústica
2.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884095

RESUMO

Acoustic emission (AE) testing detects the onset and progression of mechanical flaws. AE as a diagnostic tool is gaining traction for providing a tribological assessment of human joints and orthopaedic implants. There is potential for using AE as a tool for diagnosing joint pathologies such as osteoarthritis and implant failure, but the signal analysis must differentiate between wear mechanisms-a challenging problem! In this study, we use supervised learning to classify AE signals from adhesive and abrasive wear under controlled joint conditions. Uncorrelated AE features were derived using principal component analysis and classified using three methods, logistic regression, k-nearest neighbours (KNN), and back propagation (BP) neural network. The BP network performed best, with a classification accuracy of 98%, representing an exciting development for the clustering and supervised classification of AE signals as a bio-tribological diagnostic tool.


Assuntos
Acústica , Osteoartrite , Humanos , Redes Neurais de Computação , Osteoartrite/diagnóstico , Análise de Componente Principal , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...