Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38382583

RESUMO

BACKGROUND: In patients with end-stage chronic obstructive pulmonary disease (COPD), severe pulmonary hypertension (PH) is frequently associated with less severe airway obstruction as compared to mild or no PH. However, the histologic correlate of this finding is not clear. We aimed to quantify remodeling of pulmonary arteries, airways, and parenchyma in random samples of explanted end-stage COPD lungs. METHODS: We quantified remodeling of small pulmonary arteries, small airways, and the degree of emphysema (mean interseptal distance [MID]) with dedicated software. As primary objective, we compared COPD patients with severe PH (SevPH-COPD) with age- and sex-matched MildPH-COPD. For comparison, we also investigated COPD lungs with no PH (NoPH-COPD), idiopathic PAH (IPAH), and healthy donors. RESULTS: We included n = 17 SevPH-COPD (mPAP = 43 [39-45]mm Hg), n = 17 MildPH-COPD (mPAP = 28 [24-31]mm Hg), n = 5 NoPH-COPD (mPAP = 18 [16-19]mm Hg), n = 10 IPAH (mPAP = 72 [65-91]mm Hg), and n = 10 healthy donor lungs. SevPH-COPD versus MildPH-COPD was characterized by better preserved forced vital capacity (51% vs 40% predicted, p < 0.05), less emphysema (MID 169 µm vs 279 µm, p < 0.001), and less PAS-positive and CD45-positive mucosa cells (15% vs 22%, p = 0.063% and 5% vs 7%, p = 0.058) suggesting less airway inflammation. In COPD patients, intimal and medial thickening were strongly correlated with mPAP (r = 0.676, p < 0.001 and r = 0.595, p < 0.001). MID was negatively correlated with mPAP (r = -0.556, p < 0.001) and was highest in NoPH-COPD (mean 281 µm), suggesting that emphysema per se is not associated with PH. CONCLUSIONS: End-stage COPD with severe PH is characterized by pronounced pulmonary vascular remodeling, less inflammation of small airways, and less emphysema as compared to COPD with mild PH or no PH, suggesting that COPD with severe PH may represent a unique phenotype of COPD.

2.
Pneumologie ; 77(11): 862-870, 2023 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-37963476

RESUMO

The recently published new European guidelines for diagnosis and treatment of pulmonary hypertension now offer the so far most extensive description of genetic testing and counselling for pulmonary arterial hypertension patients. In addition, the importance of a clinical screening of healthy mutation carriers is highlighted as well as the genetic testing of patients with a suspicion of pulmonary veno-occlusive disease. We frame the respective parts of the guidelines on genetic testing and counselling in the context of recent data and provide comments. Finally, we give an outlook on novel molecular approaches starting from Sotatercept, addressing ion channels and novel therapeutic developments.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Pneumopatia Veno-Oclusiva , Humanos , Hipertensão Pulmonar Primária Familiar/diagnóstico , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/terapia , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/terapia , Pneumopatia Veno-Oclusiva/diagnóstico , Pneumopatia Veno-Oclusiva/genética , Pneumopatia Veno-Oclusiva/terapia
4.
Am J Physiol Cell Physiol ; 325(5): C1294-C1312, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694286

RESUMO

Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to ß1-integrin subunit clustering and Rho/ROCK activation. Blockage of the ß1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the ß1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Endotélio/metabolismo , Artéria Pulmonar/metabolismo , Colágeno/metabolismo , Integrinas/metabolismo
5.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37292870

RESUMO

Background: Pulmonary hypertension (PH) poses a significant health threat with high morbidity and mortality, necessitating improved diagnostic tools for enhanced management. Current biomarkers for PH lack functionality and comprehensive diagnostic and prognostic capabilities. Therefore, there is a critical need to develop biomarkers that address these gaps in PH diagnostics and prognosis. Methods: To address this need, we employed a comprehensive metabolomics analysis in 233 blood based samples coupled with machine learning analysis. For functional insights, human pulmonary arteries (PA) of idiopathic pulmonary arterial hypertension (PAH) lungs were investigated and the effect of extrinsic FFAs on human PA endothelial and smooth muscle cells was tested in vitro. Results: PA of idiopathic PAH lungs showed lipid accumulation and altered expression of lipid homeostasis-related genes. In PA smooth muscle cells, extrinsic FFAs caused excessive proliferation and endothelial barrier dysfunction in PA endothelial cells, both hallmarks of PAH.In the training cohort of 74 PH patients, 30 disease controls without PH, and 65 healthy controls, diagnostic and prognostic markers were identified and subsequently validated in an independent cohort. Exploratory analysis showed a highly impacted metabolome in PH patients and machine learning confirmed a high diagnostic potential. Fully explainable specific free fatty acid (FFA)/lipid-ratios were derived, providing exceptional diagnostic accuracy with an area under the curve (AUC) of 0.89 in the training and 0.90 in the validation cohort, outperforming machine learning results. These ratios were also prognostic and complemented established clinical prognostic PAH scores (FPHR4p and COMPERA2.0), significantly increasing their hazard ratios (HR) from 2.5 and 3.4 to 4.2 and 6.1, respectively. Conclusion: In conclusion, our research confirms the significance of lipidomic alterations in PH, introducing innovative diagnostic and prognostic biomarkers. These findings may have the potential to reshape PH management strategies.

6.
Eur Respir Rev ; 32(167)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36631133

RESUMO

COPD is a heterogeneous disease with multiple clinical phenotypes. COPD endotypes can be determined by different expressions of hypoxia-inducible factors (HIFs), which, in combination with individual susceptibility and environmental factors, may cause predominant airway or vascular changes in the lung. The pulmonary vascular phenotype is relatively rare among COPD patients and characterised by out-of-proportion pulmonary hypertension (PH) and low diffusing capacity of the lung for carbon monoxide, but only mild-to-moderate airway obstruction. Its histologic feature, severe remodelling of the small pulmonary arteries, can be mediated by HIF-2 overexpression in experimental PH models. HIF-2 is not only involved in the vascular remodelling but also in the parenchyma destruction. Endothelial cells from human emphysema lungs express reduced HIF-2α levels, and the deletion of pulmonary endothelial Hif-2α leads to emphysema in mice. This means that both upregulation and downregulation of HIF-2 have adverse effects and that HIF-2 may represent a molecular "switch" between the development of the vascular and airway phenotypes in COPD. The mechanisms of HIF-2 dysregulation in the lung are only partly understood. HIF-2 levels may be controlled by NAD(P)H oxidases via iron- and redox-dependent mechanisms. A better understanding of these mechanisms may lead to the development of new therapeutic targets.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Enfisema/metabolismo , Enfisema/patologia , Células Endoteliais/patologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo
7.
Hypertension ; 80(2): e17-e28, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36519465

RESUMO

BACKGROUND: Smooth muscle cell (SMC) expansion is one key morphological hallmark of pathologically altered vasculature and a characteristic feature of pulmonary vascular remodeling in pulmonary hypertension. Normal embryonal vessel maturation requires successful coverage of endothelial tubes with SMC, which is dependent on ephrin-B2 and EphB4 ligand-receptor guidance system. In this study, we investigated the potential role of ephrin-B2 and EphB4 on neomuscularization in adult pulmonary vascular disease. METHODS AND RESULTS: Ephrin-B2 and EphB4 expression is preserved in smooth muscle and endothelial cells of remodeled pulmonary arteries. Chronic hypoxia-induced pulmonary hypertension was not ameliorated in mice with SMC-specific conditional ephrin-B2 knockout. In mice with global inducible ephrin-B2 knockout, pulmonary vascular remodeling and right ventricular hypertrophy upon chronic hypoxia exposure were significantly diminished compared to hypoxic controls, while right ventricular systolic pressure was unaffected. In contrast, EphB4 receptor kinase activity inhibition reduced right ventricular systolic pressure in hypoxia-induced pulmonary hypertension without affecting pulmonary vascular remodeling. Genetic deletion of ephrin-B2 in murine pulmonary artery SMC, and pharmacological inhibition of EphB4 in human pulmonary artery smooth muscle cells, blunted mitogen-induced cell proliferation. Loss of EphB4 signaling additionally reduced RhoA expression and weakened the interaction between human pulmonary artery smooth muscle cells and endothelial cells in a three-dimensional coculture model. CONCLUSIONS: In sum, pulmonary vascular remodeling was dependent on ephrin-B2-induced Eph receptor (erythropoietin-producing hepatocellular carcinoma receptor) forward signaling in SMC, while EphB4 receptor activity was necessary for RhoA expression in SMC, interaction with endothelial cells and vasoconstrictive components of pulmonary hypertension.


Assuntos
Células Endoteliais , Efrina-B2 , Adulto , Camundongos , Humanos , Animais , Efrina-B2/genética , Efrina-B2/metabolismo , Células Endoteliais/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Remodelação Vascular , Receptores Proteína Tirosina Quinases/metabolismo
8.
Biomedicines ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551845

RESUMO

Angiogenesis is an essential process by which new blood vessels develop from existing ones. While adequate angiogenesis is a physiological process during, for example, tissue repair, insufficient and excessive angiogenesis stands on the pathological side. Fine balance between pro- and anti-angiogenic factors in the tissue environment regulates angiogenesis. Identification of these factors and how they function is a pressing topic to develop angiogenesis-targeted therapeutics. During the last decade, exciting data highlighted non-metabolic functions of intermediates of the mitochondrial Krebs cycle including succinate. Among these functions is the contribution of succinate to angiogenesis in various contexts and through different mechanisms. As the concept of targeting metabolism to treat a wide range of diseases is rising, in this review we summarize the mechanisms by which succinate regulates angiogenesis in normal and pathological settings. Gaining a comprehensive insight into how this metabolite functions as an angiogenic signal will provide a useful approach to understand diseases with aberrant or excessive angiogenic background, and may provide strategies to tackle them.

9.
Sci Transl Med ; 14(674): eabg8577, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475904

RESUMO

Pneumonia is the most common cause of the acute respiratory distress syndrome (ARDS). Here, we identified loss of endothelial cystic fibrosis transmembrane conductance regulator (CFTR) as an important pathomechanism leading to lung barrier failure in pneumonia-induced ARDS. CFTR was down-regulated after Streptococcus pneumoniae infection ex vivo or in vivo in human or murine lung tissue, respectively. Analysis of isolated perfused rat lungs revealed that CFTR inhibition increased endothelial permeability in parallel with intracellular chloride ion and calcium ion concentrations ([Cl-]i and [Ca2+]i). Inhibition of the chloride ion-sensitive with-no-lysine kinase 1 (WNK1) protein with tyrphostin 47 or WNK463 replicated the effect of CFTR inhibition on endothelial permeability and endothelial [Ca2+]i, whereas WNK1 activation by temozolomide attenuated it. Endothelial [Ca2+]i transients and permeability in response to inhibition of either CFTR or WNK1 were prevented by inhibition of the cation channel transient receptor potential vanilloid 4 (TRPV4). Mice deficient in Trpv4 (Trpv4-/-) developed less lung edema and protein leak than their wild-type littermates after infection with S. pneumoniae. The CFTR potentiator ivacaftor prevented lung CFTR loss, edema, and protein leak after S. pneumoniae infection in wild-type mice. In conclusion, lung infection caused loss of CFTR that promoted lung edema formation through intracellular chloride ion accumulation, inhibition of WNK1, and subsequent disinhibition of TRPV4, resulting in endothelial calcium ion influx and vascular barrier failure. Ivacaftor prevented CFTR loss in the lungs of mice with pneumonia and may, therefore, represent a possible therapeutic strategy in people suffering from ARDS due to severe pneumonia.


Assuntos
Cloretos , Pneumonia , Humanos , Camundongos , Animais , Cálcio , Pulmão , Regulador de Condutância Transmembrana em Fibrose Cística , Canais de Cátion TRPV
10.
Pharmacol Ther ; 237: 108249, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878810

RESUMO

Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.


Assuntos
Fibrose Cística , Hipertensão Arterial Pulmonar , Viroses , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Hipertensão Pulmonar Primária Familiar , Humanos , Pulmão/metabolismo , Viroses/tratamento farmacológico
11.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563072

RESUMO

The transition from the fetal to the neonatal circulation includes dilatation of the pulmonary arteries (PA) and closure of the Ductus Arteriosus Botalli (DAB). The resting membrane potential and various potassium channel activities in smooth muscle cells (SMC) from fetal and neonatal PA and DAB obtained from the same species has not been systematically analyzed. The key issue addressed in this paper is how the resting membrane potential and the whole-cell potassium current (IK) change when PASMC or DABSMC are transitioned from hypoxia, reflecting the fetal state, to normoxia, reflecting the post-partal state. Patch-clamp measurements were employed to characterize whole-cell K+ channel activity in fetal and post-partal (newborn) PASMC and DABSMC. The main finding of this paper is that the SMC from both tissues use a similar set of K+ channels (voltage-dependent (Kv), calcium-sensitive (KCa), TASK-1 and probably also TASK-2 channels); however, their activity level depends on the cell type and the oxygen level. Furthermore, we provide the first evidence for pH-sensitive non-inactivating K+ current in newborn DABSMC and PASMC, suggesting physiologically relevant TASK-1 and TASK-2 channel activity, the latter particularly in the Ductus Arteriosus Botalli.


Assuntos
Canal Arterial , Canais de Potássio , Circulação Pulmonar , Animais , Canal Arterial/metabolismo , Desenvolvimento Fetal/fisiologia , Humanos , Recém-Nascido , Músculo Liso Vascular/metabolismo , Canais de Potássio/metabolismo , Artéria Pulmonar/metabolismo , Circulação Pulmonar/fisiologia , Ratos
12.
Eur Respir J ; 60(4)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35332068

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterised by severe vasculopathy and fibrosis of various organs including the lung. Targeted treatment options for SSc-associated interstitial lung disease (SSc-ILD) are scarce. We assessed the effects of pirfenidone in a mouse model of SSc-ILD. METHODS: Pulmonary function, inflammation and collagen deposition in response to pirfenidone were assessed in Fra-2-overexpressing transgenic (Fra-2 TG) and bleomycin-treated mice. In Fra-2 TG mice, lung transcriptome was analysed after pirfenidone treatment. In vitro, pirfenidone effects on human eosinophil and endothelial cell function were analysed using flow cytometry-based assays and electric cell-substrate impedance measurements, respectively. RESULTS: Pirfenidone treatment attenuated pulmonary remodelling in the bleomycin model, but aggravated pulmonary inflammation, fibrosis and vascular remodelling in Fra-2 TG mice. Pirfenidone increased interleukin (IL)-4 levels and eosinophil numbers in lung tissue of Fra-2 TG mice without directly affecting eosinophil activation and migration in vitro. A pronounced immune response with high levels of cytokines/chemokines and disturbed endothelial integrity with low vascular endothelial (VE)-cadherin levels was observed in pirfenidone-treated Fra-2 TG mice. In contrast, eosinophil and VE-cadherin levels were unchanged in bleomycin-treated mice and not influenced by pirfenidone. In vitro, pirfenidone exacerbated the IL-4 induced reduction of endothelial barrier resistance, leading to higher leukocyte transmigration. CONCLUSION: This study shows that antifibrotic properties of pirfenidone may be overruled by unwanted interactions with pre-injured endothelium in a setting of high T-helper type 2 inflammation in a model of SSc-ILD. Careful ILD patient phenotyping may be required to exploit benefits of pirfenidone while avoiding therapy failure and additional lung damage in some patients.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Camundongos , Animais , Interleucina-4/farmacologia , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/metabolismo , Bleomicina/farmacologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/complicações , Pulmão/patologia , Fibrose , Modelos Animais de Doenças , Inflamação/metabolismo , Colágeno/metabolismo , Colágeno/farmacologia , Citocinas/metabolismo , Quimiocinas/metabolismo , Caderinas/metabolismo
13.
Front Physiol ; 13: 986295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685176

RESUMO

Background: NT-proBNP and GDF-15 are established blood-derived biomarkers for risk assessment in pulmonary hypertension (PH), despite limited sensitivity and specificity. Apelin has a crucial function in endothelial homeostasis, thus it might represent a new biomarker for PH. However, there are numerous circulating apelin isoforms, and their potential role in this setting is unknown. This study evaluated different apelin isoforms in PH patients and prospectively evaluated the role of apelin-17 in comparison with NT-proBNP and GDF-15 as diagnostic marker in idiopathic pulmonary arterial hypertension (IPAH). Methods: Based on our pilot study, we performed a power calculation for apelin-13, apelin-17, apelin-36, as predictor of IPAH vs healthy controls. Apelin-17 provided the best discriminatory power, and accordingly, we enrolled n = 31 patients with IPAH and n = 31 matched healthy controls in a prospective study. NT-proBNP and GDF-15 was determined in all patients. ROC curve analysis was performed to assess the diagnostic value of the markers and their combinations. Results: Apelin-17, NT-proBNP, and GDF-15 were significantly elevated in IPAH patients as compared to controls (p < .001). Apelin-17 detected IPAH with a sensitivity of 68% and a specificity of 93% at a cut-off value of >1,480 pg/ml (AUC 0.86, 95%CI:0.76-0.95) as compared to GDF-15 (sensitivity 86%; specificity 72%, AUC 0.81 (95%CI:0.7-0.92)) and NT-proBNP (sensitivity 86%; specificity 72% (AUC 0.85, 95%CI:0.75-0.95)). Combinations of these markers could be used to increase either specificity or sensitivity. Conclusion: Apelin-17 appears to be suitable blood derived diagnostic marker for idiopathic pulmonary arterial hypertension.

14.
Biomolecules ; 11(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34827626

RESUMO

Potassium ion concentrations, controlled by ion pumps and potassium channels, predominantly govern a cell's membrane potential and the tone in the vessels. Calcium-activated potassium channels respond to two different stimuli-changes in voltage and/or changes in intracellular free calcium. Large conductance calcium-activated potassium (BKCa) channels assemble from pore forming and various modulatory and auxiliary subunits. They are of vital significance due to their very high unitary conductance and hence their ability to rapidly cause extreme changes in the membrane potential. The pathophysiology of lung diseases in general and pulmonary hypertension, in particular, show the implication of either decreased expression and partial inactivation of BKCa channel and its subunits or mutations in the genes encoding different subunits of the channel. Signaling molecules, circulating humoral molecules, vasorelaxant agents, etc., have an influence on the open probability of the channel in pulmonary arterial vascular cells. BKCa channel is a possible therapeutic target, aimed to cause vasodilation in constricted or chronically stiffened vessels, as shown in various animal models. This review is a comprehensive collation of studies on BKCa channels in the pulmonary circulation under hypoxia (hypoxic pulmonary vasoconstriction; HPV), lung pathology, and fetal to neonatal transition, emphasising pharmacological interventions as viable therapeutic options.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Cálcio , Circulação Pulmonar
15.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502263

RESUMO

The regulator of G protein signaling (RGS) represents a widespread system of controllers of cellular responses. The activities of the R4 subfamily of RGSs have been elucidated in allergic pulmonary diseases. However, the R4 signaling in other inflammatory lung diseases, with a strong cellular immune response, remained unexplored. Thus, our study aimed to discern the functional relevance of the R4 family member, RGS5, as a potential modulating element in this context. Gene profiling of the R4 subfamily showed increased RGS5 expression in human fibrosing lung disease samples. In line with this, RGS5 was markedly increased in murine lungs following bleomycin injury. RGS knock-out mice (RGS-/-) had preserved lung function while control mice showed significant combined ventilatory disorders three days after bleomycin application as compared to untreated control mice. Loss of RGS5 was associated with a significantly reduced neutrophil influx and tissue myeloperoxidase expression. In the LPS lung injury model, RGS5-/- mice also failed to recruit neutrophils into the lung, which was accompanied by reduced tissue myeloperoxidase levels after 24 h. Our in-vitro assays showed impaired migration of RGS5-/- neutrophils towards chemokines despite preserved Ca2+ signaling. ERK dephosphorylation might play a role in reduced neutrophil migration in our model. As a conclusion, loss of RGS5 preserves lung function and attenuates hyperinflammation in the acute phase of bleomycin-induced pulmonary fibrosis and LPS-induced lung injury. Targeting RGS5 might alleviate the severity of exacerbations in interstitial lung diseases.


Assuntos
Inflamação/metabolismo , Lesão Pulmonar/metabolismo , Neutrófilos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Animais , Bleomicina/toxicidade , Quimiotaxia/genética , Modelos Animais de Doenças , Fibrose/genética , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Neutrófilos/citologia , Proteínas RGS/deficiência , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/metabolismo
16.
Eur Respir J ; 58(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33926975

RESUMO

INTRODUCTION: A reduction in pulmonary artery relaxation is a key event in the pathogenesis of pulmonary arterial hypertension (PAH). Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in airway epithelial cells plays a central role in cystic fibrosis; CFTR is also expressed in pulmonary arteries and has been shown to control endothelium-independent relaxation. AIM AND OBJECTIVES: We aimed to delineate the role of CFTR in PAH pathogenesis through observational and interventional experiments in human tissues and animal models. METHODS AND RESULTS: Reverse-transcriptase quantitative PCR, confocal imaging and electron microscopy showed that CFTR expression was reduced in pulmonary arteries from patients with idiopathic PAH (iPAH) and in rats with monocrotaline-induced pulmonary hypertension (PH). Moreover, using myography on human, pig and rat pulmonary arteries, we demonstrated that CFTR activation induces pulmonary artery relaxation. CFTR-mediated pulmonary artery relaxation was reduced in pulmonary arteries from iPAH patients and rats with monocrotaline- or chronic hypoxia-induced PH. Long-term in vivo CFTR inhibition in rats significantly increased right ventricular systolic pressure, which was related to exaggerated pulmonary vascular cell proliferation in situ and vessel neomuscularisation. Pathologic assessment of lungs from patients with severe cystic fibrosis (F508del-CFTR) revealed severe pulmonary artery remodelling with intimal fibrosis and medial hypertrophy. Lungs from homozygous F508delCftr rats exhibited pulmonary vessel neomuscularisation. The elevations in right ventricular systolic pressure and end diastolic pressure in monocrotaline-exposed rats with chronic CFTR inhibition were more prominent than those in vehicle-exposed rats. CONCLUSIONS: CFTR expression is strongly decreased in pulmonary artery smooth muscle and endothelial cells in human and animal models of PH. CFTR inhibition increases vascular cell proliferation and strongly reduces pulmonary artery relaxation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Hipertensão Arterial Pulmonar , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Endoteliais , Humanos , Monocrotalina , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Ratos , Suínos
17.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L916-L925, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33655757

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a deadly condition characterized by progressive respiratory dysfunction. Exacerbations due to airway infections are believed to promote disease progression, and presence of Streptococcus in the lung microbiome has been associated with the progression of IPF and mortality. The aim of this study was to analyze the effect of lung fibrosis on susceptibility to pneumococcal pneumonia and bacteremia. The effects of subclinical (low dose) infection with Streptococcus pneumoniae were studied in a well characterized fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of spontaneous, progressive pulmonary fibrosis. Forty-eight hours after transnasal infection with S. pneumoniae, bacterial load was assessed in lung tissue, bronchoalveolar lavage (BAL), blood, and spleen. Leukocyte subsets and cytokine levels were analyzed in BAL and blood. Lung compliance and arterial blood gases were assessed. In contrast to wildtype mice, low dose lung infection with S. pneumoniae in Fra-2 TG mice resulted in substantial pneumonia including weight loss, increased lung bacterial load, and bacteremia. BAL alveolar macrophages were reduced in Fra-2 TG mice compared to the corresponding WT mice. Proinflammatory cytokines and chemokines (IL-1ß, IL-6, TNF-α, and CXCL1) were elevated upon infection in BAL supernatant and plasma of Fra-2 TG mice. Lung compliance was decreased in Fra-2 TG mice following low dose infection with S. pneumoniae. Pulmonary fibrosis increases susceptibility to pneumococcal pneumonia and bacteremia possibly via impaired alveolar bacterial clearance.


Assuntos
Antígeno 2 Relacionado a Fos , Macrófagos Alveolares , Pneumonia Pneumocócica , Fibrose Pulmonar , Streptococcus pneumoniae/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Transgênicos , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/microbiologia , Fibrose Pulmonar/patologia
18.
Histochem Cell Biol ; 155(5): 593-603, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33404705

RESUMO

Preservation of ultrastructural features in biological samples for electron microscopy (EM) is a challenging task that is routinely accomplished through chemical fixation or high-pressure freezing coupled to automated freeze substitution (AFS) using specialized devices. However, samples from clinical (e.g. "biobanking" of bulk biopsies) and preclinical (e.g. whole mouse tissues) specimens are often not specifically prepared for ultrastructural analyses but simply immersed in liquid nitrogen before long-term cryo-storage. We demonstrate that ultrastructural features of such samples are insufficiently conserved using AFS and developed a simple, rapid, and effective method for thawing that does not require specific instrumentation. This procedure consists of dry ice-cooled pre-trimming of frozen tissue and aldehyde fixation for 3 h at 37 °C followed by standard embedding steps. Herein investigated tissues comprised human term placentae, clinical lung samples, as well as mouse tissues of different composition (brown adipose tissue, white adipose tissue, cardiac muscle, skeletal muscle, liver). For all these tissues, we compared electron micrographs prepared from cryo-stored material with our method to images derived from directly prepared fresh tissues with standard chemical fixation. Our protocol yielded highly conserved ultrastructural features and tissue-specific details, largely matching the quality of fresh tissue samples. Furthermore, morphometric analysis of lipid droplets and mitochondria in livers of fasted mice demonstrated that statistically valid quantifications can be derived from samples prepared with our method. Overall, we provide a simple and effective protocol for accurate ultrastructural and morphometric analyses of cryo-stored bulk tissue samples.


Assuntos
Criopreservação , Congelamento , Gotículas Lipídicas/ultraestrutura , Fígado/ultraestrutura , Mitocôndrias/ultraestrutura , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica
19.
Cells ; 9(9)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872351

RESUMO

Endothelial dysfunction is one of the hallmarks of different vascular diseases, including pulmonary arterial hypertension (PAH). Ion channelome changes have long been connected to vascular remodeling in PAH, yet only recently has the focus shifted towards Ca2+-activated Cl- channels (CaCC). The most prominent member of the CaCC TMEM16A has been shown to contribute to the pathogenesis of idiopathic PAH (IPAH) in pulmonary arterial smooth muscle cells, however its role in the homeostasis of healthy human pulmonary arterial endothelial cells (PAECs) and in the development of endothelial dysfunction remains underrepresented. Here we report enhanced TMEM16A activity in IPAH PAECs by whole-cell patch-clamp recordings. Using adenoviral-mediated TMEM16A increase in healthy primary human PAECs in vitro and in human pulmonary arteries ex vivo, we demonstrate the functional consequences of the augmented TMEM16A activity: alterations of Ca2+ dynamics and eNOS activity as well as decreased NO production, PAECs proliferation, wound healing, tube formation and acetylcholine-mediated relaxation of human pulmonary arteries. We propose that the ERK1/2 pathway is specifically affected by elevated TMEM16A activity, leading to these pathological changes. With this work we introduce increased TMEM16A activity in the cell membrane of human PAECs for the development of endothelial dysfunction in PAH.


Assuntos
Células Endoteliais/metabolismo , Artéria Pulmonar/metabolismo , Anoctamina-1 , Humanos , Proteínas de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...