Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37849306

RESUMO

OBJECTIVE: In Norway, 89% of patients with Amyotrophic lateral sclerosis (ALS) lacks a genetic diagnose. ALS genes and genes that cause other neuromuscular or neurodegenerative disorders extensively overlap. This population-based study examined whether patients with ALS have a family history of neurological disorders and explored the occurrence of rare genetic variants associated with other neurodegenerative or neuromuscular disorders. METHODS: During a two-year period, blood samples and clinical data from patients with ALS were collected from all 17 neurological departments in Norway. Our genetic analysis involved exome sequencing and bioinformatics filtering of 510 genes associated with neurodegenerative and neuromuscular disorders. The variants were interpreted using genotype-phenotype correlations and bioinformatics tools. RESULTS: A total of 279 patients from a Norwegian population-based ALS cohort participated in this study. Thirty-one percent of the patients had first- or second-degree relatives with other neurodegenerative disorders, most commonly dementia and Parkinson's disease. The genetic analysis identified 20 possible pathogenic variants, in ATL3, AFG3L2, ATP7A, BICD2, HARS1, KIF1A, LRRK2, MSTO1, NEK1, NEFH, and SORL1, in 25 patients. NEK1 risk variants were present in 2.5% of this ALS cohort. Only four of the 25 patients reported relatives with other neurodegenerative or neuromuscular disorders. CONCLUSION: Gene variants known to cause other neurodegenerative or neuromuscular disorders, most frequently in NEK1, were identified in 9% of the patients with ALS. Most of these patients had no family history of other neurodegenerative or neuromuscular disorders. Our findings indicated that AFG3L2, ATP7A, BICD2, KIF1A, and MSTO1 should be further explored as potential ALS-causing genes.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ciclo Celular , Doenças Neurodegenerativas , Humanos , Predisposição Genética para Doença/genética , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Família , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Cinesinas/genética , Proteínas do Citoesqueleto/genética
2.
Neuroepidemiology ; 56(4): 271-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35576897

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons. In Europe, disease-causing genetic variants have been identified in 40-70% of familial ALS patients and approximately 5% of sporadic ALS patients. In Norway, the contribution of genetic variants to ALS has not yet been studied. In light of the potential development of personalized medicine, knowledge of the genetic causes of ALS in a population is becoming increasingly important. The present study provides clinical and genetic data on familial and sporadic ALS patients in a Norwegian population-based cohort. METHODS: Blood samples and clinical information from ALS patients were obtained at all 17 neurological departments throughout Norway during a 2-year period. Genetic analysis of the samples involved expansion analysis of C9orf72 and exome sequencing targeting 30 known ALS-linked genes. The variants were classified using genotype-phenotype correlations and bioinformatics tools. RESULTS: A total of 279 ALS patients were included in the study. Of these, 11.5% had one or several family members affected by ALS, whereas 88.5% had no known family history of ALS. A genetic cause of ALS was identified in 31 individuals (11.1%), among which 18 (58.1%) were familial and 13 (41.9%) were sporadic. The most common genetic cause was the C9orf72 expansion (6.8%), which was identified in 8 familial and 11 sporadic ALS patients. Pathogenic or likely pathogenic variants of SOD1 and TBK1 were identified in 10 familial and 2 sporadic cases. C9orf72 expansions dominated in patients from the Northern and Central regions, whereas SOD1 variants dominated in patients from the South-Eastern region. CONCLUSION: In the present study, we identified several pathogenic gene variants in both familial and sporadic ALS patients. Restricting genetic analysis to only familial cases would miss more than 40 percent of those with a disease-causing genetic variant, indicating the need for genetic analysis in sporadic cases as well.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Humanos , Epidemiologia Molecular , Superóxido Dismutase-1/genética
3.
Lipids ; 44(8): 673-83, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19582494

RESUMO

The SREBP-2 transcription factor is mainly activated by low cellular cholesterol levels. However, other factors may also cause SREBP-2 activation. We have previously demonstrated activation of SREBP-2 by the polyunsaturated fatty acid docosahexaenoic acid (DHA) in SW620 colon cancer cells. Despite activation of SREBP-2, only a few target genes were induced and cholesterol biosynthesis was reduced. In the present study, gene expression analysis at early time points verified the previously observed SREBP-2 target gene expression pattern. Activation of SREBP-2 using siRNAs targeting Niemann Pick C1 protein (NPC1) led to increased expression of all SREBP target genes examined, indicating that activation of some SREBP-2 target genes is inhibited during DHA-treatment. Cholesterol supplementation during DHA treatment did not abolish SREBP-2 activation. We also demonstrate that activation of SREBP-2 is independent of ER stress and eIF2alpha phosphorylation, which we have previously observed in DHA-treated cells. Thapsigargin-induced ER stress repressed expression of SREBP-2 target genes, but with a different pattern than observed in DHA-treated cells. Moreover, oleic acid (OA) treatment, which does not induce ER stress in SW620 cells, led to activation of SREBP-2 and induced a target gene expression pattern similar to that of DHA-treated cells. These results indicate that DHA and OA may activate SREBP-2 and inhibit activation of SREBP-2 target genes through a mechanism independent of cholesterol level and ER stress.


Assuntos
Adenocarcinoma/genética , Colesterol/farmacologia , Neoplasias do Colo/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Retículo Endoplasmático/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/fisiologia , Adenocarcinoma/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Oleico/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...