Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114188, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38713584

RESUMO

Detecting novelty is ethologically useful for an organism's survival. Recent experiments characterize how different types of novelty over timescales from seconds to weeks are reflected in the activity of excitatory and inhibitory neuron types. Here, we introduce a learning mechanism, familiarity-modulated synapses (FMSs), consisting of multiplicative modulations dependent on presynaptic or pre/postsynaptic neuron activity. With FMSs, network responses that encode novelty emerge under unsupervised continual learning and minimal connectivity constraints. Implementing FMSs within an experimentally constrained model of a visual cortical circuit, we demonstrate the generalizability of FMSs by simultaneously fitting absolute, contextual, and omission novelty effects. Our model also reproduces functional diversity within cell subpopulations, leading to experimentally testable predictions about connectivity and synaptic dynamics that can produce both population-level novelty responses and heterogeneous individual neuron signals. Altogether, our findings demonstrate how simple plasticity mechanisms within a cortical circuit structure can produce qualitatively distinct and complex novelty responses.


Assuntos
Modelos Neurológicos , Neurônios , Sinapses , Sinapses/fisiologia , Sinapses/metabolismo , Animais , Neurônios/fisiologia , Neurônios/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Aprendizagem/fisiologia
2.
Neuron ; 112(11): 1876-1890.e4, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447579

RESUMO

In complex environments, animals can adopt diverse strategies to find rewards. How distinct strategies differentially engage brain circuits is not well understood. Here, we investigate this question, focusing on the cortical Vip-Sst disinhibitory circuit between vasoactive intestinal peptide-postive (Vip) interneurons and somatostatin-positive (Sst) interneurons. We characterize the behavioral strategies used by mice during a visual change detection task. Using a dynamic logistic regression model, we find that individual mice use mixtures of a visual comparison strategy and a statistical timing strategy. Separately, mice also have periods of task engagement and disengagement. Two-photon calcium imaging shows large strategy-dependent differences in neural activity in excitatory, Sst inhibitory, and Vip inhibitory cells in response to both image changes and image omissions. In contrast, task engagement has limited effects on neural population activity. We find that the diversity of neural correlates of strategy can be understood parsimoniously as the increased activation of the Vip-Sst disinhibitory circuit during the visual comparison strategy, which facilitates task-appropriate responses.


Assuntos
Interneurônios , Somatostatina , Peptídeo Intestinal Vasoativo , Córtex Visual , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Córtex Visual/fisiologia , Camundongos , Somatostatina/metabolismo , Interneurônios/fisiologia , Inibição Neural/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
3.
Nat Neurosci ; 27(1): 129-136, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957319

RESUMO

Visual masking can reveal the timescale of perception, but the underlying circuit mechanisms are not understood. Here we describe a backward masking task in mice and humans in which the location of a stimulus is potently masked. Humans report reduced subjective visibility that tracks behavioral deficits. In mice, both masking and optogenetic silencing of visual cortex (V1) reduce performance over a similar timecourse but have distinct effects on response rates and accuracy. Activity in V1 is consistent with masked behavior when quantified over long, but not short, time windows. A dual accumulator model recapitulates both mouse and human behavior. The model and subjects' performance imply that the initial spikes in V1 can trigger a correct response, but subsequent V1 activity degrades performance. Supporting this hypothesis, optogenetically suppressing mask-evoked activity in V1 fully restores accurate behavior. Together, these results demonstrate that mice, like humans, are susceptible to masking and that target and mask information is first confounded downstream of V1.


Assuntos
Mascaramento Perceptivo , Córtex Visual , Humanos , Camundongos , Animais , Mascaramento Perceptivo/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
4.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37662298

RESUMO

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

5.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961331

RESUMO

Recent studies have found dramatic cell-type specific responses to stimulus novelty, highlighting the importance of analyzing the cortical circuitry at the cell-type specific level of granularity to understand brain function. Although initial work classified and characterized activity for each cell type, the specific alterations in cortical circuitry-particularly when multiple novelty effects interact-remain unclear. To address this gap, we employed a large-scale public dataset of electrophysiological recordings in the visual cortex of awake, behaving mice using Neuropixels probes and designed population network models to investigate the observed changes in neural dynamics in response to a combination of distinct forms of novelty. The model parameters were rigorously constrained by publicly available structural datasets, including multi-patch synaptic physiology and electron microscopy data. Our systematic optimization approach identified tens of thousands of model parameter sets that replicate the observed neural activity. Analysis of these solutions revealed generally weaker connections under novel stimuli, as well as a shift in the balance e between SST and VIP populations. Along with this, PV and SST populations experienced overall more excitatory influences compared to excitatory and VIP populations. Our results also highlight the role of VIP neurons in multiple aspects of visual stimulus processing and altering gain and saturation dynamics under novel conditions. In sum, our findings provide a systematic characterization of how the cortical circuit adapts to stimulus novelty by combining multiple rich public datasets.

6.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645978

RESUMO

Since environments are constantly in flux, the brain's ability to identify novel stimuli that fall outside its own internal representation of the world is crucial for an organism's survival. Within the mammalian neocortex, inhibitory microcircuits are proposed to regulate activity in an experience-dependent manner and different inhibitory neuron subtypes exhibit distinct novelty responses. Discerning the function of diverse neural circuits and their modulation by experience can be daunting unless one has a biologically plausible mechanism to detect and learn from novel experiences that is both understandable and flexible. Here we introduce a learning mechanism, familiarity modulated synapses (FMSs), through which a network response that encodes novelty emerges from unsupervised synaptic modifications depending only on the presynaptic or both the pre- and postsynaptic activity. FMSs stand apart from other familiarity mechanisms in their simplicity: they operate under continual learning, do not require specialized architecture, and can distinguish novelty rapidly without requiring feedback. Implementing FMSs within a model of a visual cortical circuit that includes multiple inhibitory populations, we simultaneously reproduce three distinct novelty effects recently observed in experimental data from visual cortical circuits in mice: absolute, contextual, and omission novelty. Additionally, our model results in a set of diverse physiological responses across cell subpopulations, allowing us to analyze how their connectivity and synaptic dynamics influences their distinct behavior, leading to predictions that can be tested in experiment. Altogether, our findings demonstrate how experimentally-constrained cortical circuit structure can give rise to qualitatively distinct novelty responses using simple plasticity mechanisms. The flexibility of FMSs opens the door to computationally and theoretically investigating how distinct synapse modulations can lead to a variety of experience-dependent responses in a simple, understandable, and biologically plausible setup.

7.
Elife ; 122023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486105

RESUMO

Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.


Assuntos
Neurônios , Córtex Visual Primário , Animais , Camundongos , Neurônios/fisiologia , Encéfalo , Modelos Neurológicos
8.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333175

RESUMO

When sensory information is incomplete or ambiguous, the brain relies on prior expectations to infer perceptual objects. Despite the centrality of this process to perception, the neural mechanism of sensory inference is not known. Illusory contours (ICs) are key tools to study sensory inference because they contain edges or objects that are implied only by their spatial context. Using cellular resolution, mesoscale two-photon calcium imaging and multi-Neuropixels recordings in the mouse visual cortex, we identified a sparse subset of neurons in the primary visual cortex (V1) and higher visual areas that respond emergently to ICs. We found that these highly selective 'IC-encoders' mediate the neural representation of IC inference. Strikingly, selective activation of these neurons using two-photon holographic optogenetics was sufficient to recreate IC representation in the rest of the V1 network, in the absence of any visual stimulus. This outlines a model in which primary sensory cortex facilitates sensory inference by selectively strengthening input patterns that match prior expectations through local, recurrent circuitry. Our data thus suggest a clear computational purpose for recurrence in the generation of holistic percepts under sensory ambiguity. More generally, selective reinforcement of top-down predictions by pattern-completing recurrent circuits in lower sensory cortices may constitute a key step in sensory inference.

9.
Elife ; 122023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358562

RESUMO

Perturbational complexity analysis predicts the presence of consciousness in volunteers and patients by stimulating the brain with brief pulses, recording EEG responses, and computing their spatiotemporal complexity. We examined the underlying neural circuits in mice by directly stimulating cortex while recording with EEG and Neuropixels probes during wakefulness and isoflurane anesthesia. When mice are awake, stimulation of deep cortical layers reliably evokes locally a brief pulse of excitation, followed by a biphasic sequence of 120 ms profound off period and a rebound excitation. A similar pattern, partially attributed to burst spiking, is seen in thalamic nuclei and is associated with a pronounced late component in the evoked EEG. We infer that cortico-thalamo-cortical interactions drive the long-lasting evoked EEG signals elicited by deep cortical stimulation during the awake state. The cortical and thalamic off period and rebound excitation, and the late component in the EEG, are reduced during running and absent during anesthesia.


Assuntos
Isoflurano , Tálamo , Camundongos , Animais , Tálamo/fisiologia , Vigília , Estado de Consciência , Eletroencefalografia
10.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131710

RESUMO

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.

11.
Nat Commun ; 14(1): 2344, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095130

RESUMO

The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.


Assuntos
Encéfalo , Córtex Visual Primário , Camundongos , Animais , Encéfalo/fisiologia , Biofísica
12.
Front Comput Neurosci ; 17: 1040629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994445

RESUMO

Neurophysiological differentiation (ND), a measure of the number of distinct activity states that a neural population visits over a time interval, has been used as a correlate of meaningfulness or subjective perception of visual stimuli. ND has largely been studied in non-invasive human whole-brain recordings where spatial resolution is limited. However, it is likely that perception is supported by discrete neuronal populations rather than the whole brain. Therefore, here we use Neuropixels recordings from the mouse brain to characterize the ND metric across a wide range of temporal scales, within neural populations recorded at single-cell resolution in localized regions. Using the spiking activity of thousands of simultaneously recorded neurons spanning 6 visual cortical areas and the visual thalamus, we show that the ND of stimulus-evoked activity of the entire visual cortex is higher for naturalistic stimuli relative to artificial ones. This finding holds in most individual areas throughout the visual hierarchy. Moreover, for animals performing an image change detection task, ND of the entire visual cortex (though not individual areas) is higher for successful detection compared to failed trials, consistent with the assumed perception of the stimulus. Together, these results suggest that ND computed on cellular-level neural recordings is a useful tool highlighting cell populations that may be involved in subjective perception.

13.
Nat Protoc ; 18(2): 424-457, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477710

RESUMO

Multi-electrode arrays such as Neuropixels probes enable electrophysiological recordings from large populations of single neurons with high temporal resolution. By using such probes, the activity from functionally interacting, yet distinct, brain regions can be measured simultaneously by inserting multiple probes into the same subject. However, the use of multiple probes in small animals such as mice requires the removal of a sizable fraction of the skull, while also minimizing tissue damage and keeping the brain stable during the recordings. Here, we describe a step-by-step process designed to facilitate reliable recordings from up to six Neuropixels probes simultaneously in awake, head-fixed mice. The procedure involves four stages: the implantation of a headframe and a removable glass coverslip, the precise positioning of the Neuropixels probes at targeted points on the brain surface, the placement of a perforated plastic imaging window and the insertion of the probes into the brain of an awake mouse. The approach provides access to multiple brain regions and has been successfully applied across hundreds of mice. The procedure has been optimized for dense recordings from the mouse visual system, but it can be adapted for alternative recording configurations to target multiple probes in other brain areas. The protocol is suitable for users with experience in stereotaxic surgery in mice.


Assuntos
Neurônios , Vigília , Camundongos , Animais , Vigília/fisiologia , Neurônios/fisiologia , Encéfalo/fisiologia , Eletrodos , Cabeça , Eletrodos Implantados
14.
Neuron ; 111(2): 275-290.e5, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36368317

RESUMO

The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.


Assuntos
Claustrum , Camundongos , Animais , Claustrum/fisiologia , Gânglios da Base/fisiologia , Lobo Frontal , Neurônios/fisiologia , Optogenética
15.
PLoS Comput Biol ; 18(11): e1010716, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441762

RESUMO

Neurons in sensory areas encode/represent stimuli. Surprisingly, recent studies have suggested that, even during persistent performance, these representations are not stable and change over the course of days and weeks. We examine stimulus representations from fluorescence recordings across hundreds of neurons in the visual cortex using in vivo two-photon calcium imaging and we corroborate previous studies finding that such representations change as experimental trials are repeated across days. This phenomenon has been termed "representational drift". In this study we geometrically characterize the properties of representational drift in the primary visual cortex of mice in two open datasets from the Allen Institute and propose a potential mechanism behind such drift. We observe representational drift both for passively presented stimuli, as well as for stimuli which are behaviorally relevant. Across experiments, the drift differs from in-session variance and most often occurs along directions that have the most in-class variance, leading to a significant turnover in the neurons used for a given representation. Interestingly, despite this significant change due to drift, linear classifiers trained to distinguish neuronal representations show little to no degradation in performance across days. The features we observe in the neural data are similar to properties of artificial neural networks where representations are updated by continual learning in the presence of dropout, i.e. a random masking of nodes/weights, but not other types of noise. Therefore, we conclude that a potential reason for the representational drift in biological networks is driven by an underlying dropout-like noise while continuously learning and that such a mechanism may be computational advantageous for the brain in the same way it is for artificial neural networks, e.g. preventing overfitting.


Assuntos
Redes Neurais de Computação , Animais , Camundongos
16.
Neuron ; 110(22): 3661-3666, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36240770

RESUMO

We propose centralized brain observatories for large-scale recordings of neural activity in mice and non-human primates coupled with cloud-based data analysis and sharing. Such observatories will advance reproducible systems neuroscience and democratize access to the most advanced tools and data.


Assuntos
Encéfalo , Neurociências , Animais , Camundongos
17.
Neuron ; 110(9): 1585-1598.e9, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143752

RESUMO

The visual cortex is hierarchically organized, yet the presence of extensive recurrent and parallel pathways make it challenging to decipher how signals flow between neuronal populations. Here, we tracked the flow of spiking activity recorded from six interconnected levels of the mouse visual hierarchy. By analyzing leading and lagging spike-timing relationships among pairs of simultaneously recorded neurons, we created a cellular-scale directed network graph. Using a module-detection algorithm to cluster neurons based on shared connectivity patterns, we uncovered two multi-regional communication modules distributed across the hierarchy. The direction of signal flow both between and within these modules, differences in layer and area distributions, and distinct temporal dynamics suggest that one module transmits feedforward sensory signals, whereas the other integrates inputs for recurrent processing. These results suggest that multi-regional functional modules may be a fundamental feature of organization beyond cortical areas that supports signal propagation across hierarchical recurrent networks.


Assuntos
Córtex Visual , Animais , Camundongos , Neurônios/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia
18.
PLoS Comput Biol ; 17(9): e1009246, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534203

RESUMO

The maintenance of short-term memories is critical for survival in a dynamically changing world. Previous studies suggest that this memory can be stored in the form of persistent neural activity or using a synaptic mechanism, such as with short-term plasticity. Here, we compare the predictions of these two mechanisms to neural and behavioral measurements in a visual change detection task. Mice were trained to respond to changes in a repeated sequence of natural images while neural activity was recorded using two-photon calcium imaging. We also trained two types of artificial neural networks on the same change detection task as the mice. Following fixed pre-processing using a pretrained convolutional neural network, either a recurrent neural network (RNN) or a feedforward neural network with short-term synaptic depression (STPNet) was trained to the same level of performance as the mice. While both networks are able to learn the task, the STPNet model contains units whose activity are more similar to the in vivo data and produces errors which are more similar to the mice. When images are omitted, an unexpected perturbation which was absent during training, mice often do not respond to the omission but are more likely to respond to the subsequent image. Unlike the RNN model, STPNet produces a similar pattern of behavior. These results suggest that simple neural adaptation mechanisms may serve as an important bottom-up memory signal in this task, which can be used by downstream areas in the decision-making process.


Assuntos
Adaptação Fisiológica , Memória de Curto Prazo , Estimulação Luminosa , Percepção Visual , Animais , Comportamento Animal , Biologia Computacional/métodos , Tomada de Decisões , Camundongos , Redes Neurais de Computação , Análise e Desempenho de Tarefas
19.
Elife ; 102021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34270411

RESUMO

Extracellular electrophysiology and two-photon calcium imaging are widely used methods for measuring physiological activity with single-cell resolution across large populations of cortical neurons. While each of these two modalities has distinct advantages and disadvantages, neither provides complete, unbiased information about the underlying neural population. Here, we compare evoked responses in visual cortex recorded in awake mice under highly standardized conditions using either imaging of genetically expressed GCaMP6f or electrophysiology with silicon probes. Across all stimulus conditions tested, we observe a larger fraction of responsive neurons in electrophysiology and higher stimulus selectivity in calcium imaging, which was partially reconciled by applying a spikes-to-calcium forward model to the electrophysiology data. However, the forward model could only reconcile differences in responsiveness when restricted to neurons with low contamination and an event rate above a minimum threshold. This work established how the biases of these two modalities impact functional metrics that are fundamental for characterizing sensory-evoked responses.


Assuntos
Eletrofisiologia/métodos , Neurônios/fisiologia , Animais , Cálcio , Sinalização do Cálcio , Genótipo , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Córtex Visual/citologia , Córtex Visual/fisiologia
20.
Front Behav Neurosci ; 14: 104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655383

RESUMO

To study the mechanisms of perception and cognition, neural measurements must be made during behavior. A goal of the Allen Brain Observatory is to map the activity of distinct cortical cell classes underlying visual and behavioral processing. Here we describe standardized methodology for training head-fixed mice on a visual change detection task, and we use our paradigm to characterize learning and behavior of five GCaMP6-expressing transgenic lines. We used automated training procedures to facilitate comparisons across mice. Training times varied, but most transgenic mice learned the behavioral task. Motivation levels also varied across mice. To compare mice in similar motivational states we subdivided sessions into over-, under-, and optimally motivated periods. When motivated, the pattern of perceptual decisions were highly correlated across transgenic lines, although overall performance (d-prime) was lower in one line labeling somatostatin inhibitory cells. These results provide important context for using these mice to map neural activity underlying perception and behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...