Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689520

RESUMO

BACKGROUND: Tapeworms are parasitic flatworms that independently evolved a segmented body plan, historically confounding comparisons with other animals. Anteroposterior (AP) patterning in free-living flatworms and in tapeworm larvae is associated with canonical Wnt signaling and positional control genes (PCGs) are expressed by their musculature in regionalized domains along the AP axis. Here, we extend investigations of PCG expression to the adult of the mouse bile-duct tapeworm Hymenolepis microstoma, focusing on the growth zone of the neck region and the initial establishment of segmental patterning. RESULTS: We show that the adult musculature includes new, segmental elements that first appear in the neck and that the spatial patterns of Wnt factors are consistent with expression by muscle cells. Wnt factor expression is highly regionalized and becomes AP-polarized in segments, marking them with axes in agreement with the polarity of the main body axis, while the transition between the neck and strobila is specifically demarcated by the expression domain of a Wnt11 paralog. CONCLUSION: We suggest that segmentation could originate in the muscular system and participate in patterning the AP axis through regional and polarized expression of PCGs, akin to the gene regulatory networks employed by free-living flatworms and other animals.

2.
Proc Biol Sci ; 291(2015): 20232563, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38290545

RESUMO

Ligula intestinalis (Cestoda: Diphyllobothriidae) is an emerging model organism for studies on parasite population biology and host-parasite interactions. However, a well-resolved genome and catalogue of its gene content has not been previously developed. Here, we present the first genome assembly of L. intestinalis, based on Oxford Nanopore Technologies, Illumina and Omni-C sequencing methodologies. We use transcriptome profiling to compare plerocercoid larvae and adult worms and identify differentially expressed genes (DEGs) associated with these life stages. The genome assembly is 775.3 mega (M)bp in size, with scaffold N50 value of 118 Mbp and encodes 27 256 predicted protein-coding sequences. Over 60% of the genome consists of repetitive sequences. Synteny analyses showed that the 10 largest scaffolds representing 75% of the genome display high correspondence to full chromosomes of cyclophyllidean tapeworms. Mapping RNA-seq data to the new reference genome, we identified 3922 differentially expressed genes in adults compared with plerocercoids. Gene ontology analyses revealed over-represented genes involved in reproductive development of the adult stage (e.g. sperm production) and significantly enriched DEGs associated with immune evasion of plerocercoids in their fish host. This study provides the first insights into the molecular biology of L. intestinalis and provides the most highly contiguous assembly to date of a diphyllobothriid tapeworm useful for population and comparative genomic investigations of parasitic flatworms.


Assuntos
Cestoides , Infecções por Cestoides , Animais , Masculino , Sêmen , Cestoides/genética , Infecções por Cestoides/parasitologia , Peixes/genética , Perfilação da Expressão Gênica , Transcriptoma
3.
Zool J Linn Soc ; 199(2): 533-552, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37795176

RESUMO

Members of several genera in the digenean superfamily Microphalloidea, namely Renschetrema, Rohdetrema, Cryptotropa, Cephalouterina and Pseudocryptotropa, are characterized by an unusual dorsal position of the genital atrium. In the absence of phylogenetic data, their systematic position has been unstable. In the most recent taxonomic revision of the Microphalloidea, they were housed in three different families. We studied the morphology and obtained DNA sequences of several microphallolideans with a dorsal genital pore, collected from vertebrates in Southeast Asia and South America. We used sequences of the nuclear 28S gene to infer a superfamily-level phylogeny and sequences of the mitochondrial cox1 gene for family-level phylogeny and species-level comparisons. Based on the combination of molecular phylogenetic data and morphological features, we restore the Cryptotropidae and synonymize the Renschetrematidae with the Cryptotropidae. We erect new genera Paracryptotropagen. nov. and Armadoatriumgen. nov., provide amended diagnoses of the Cryptotropidae and Renschetrema and provide keys to the identification of genera within the family. We resurrect the genus Novetrema, previously synonymized with Pseudocryptotropa, and remove Renschetrema indicum from Renschetrema. We describe four new species from lizards in Vietnam and birds in the Philippines and Peru. The unique morphological features and unusually broad host associations and geographical distributions of cryptotropids are discussed.

4.
BMC Biol ; 18(1): 165, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33167983

RESUMO

BACKGROUND: Chromosome-level assemblies are indispensable for accurate gene prediction, synteny assessment, and understanding higher-order genome architecture. Reference and draft genomes of key helminth species have been published, but little is yet known about the biology of their chromosomes. Here, we present the complete genome of the tapeworm Hymenolepis microstoma, providing a reference quality, end-to-end assembly that represents the first fully assembled genome of a spiralian/lophotrochozoan, revealing new insights into chromosome evolution. RESULTS: Long-read sequencing and optical mapping data were added to previous short-read data enabling complete re-assembly into six chromosomes, consistent with karyology. Small genome size (169 Mb) and lack of haploid variation (1 SNP/3.2 Mb) contributed to exceptionally high contiguity with only 85 gaps remaining in regions of low complexity sequence. Resolution of repeat regions reveals novel gene expansions, micro-exon genes, and spliced leader trans-splicing, and illuminates the landscape of transposable elements, explaining observed length differences in sister chromatids. Syntenic comparison with other parasitic flatworms shows conserved ancestral linkage groups indicating that the H. microstoma karyotype evolved through fusion events. Strikingly, the assembly reveals that the chromosomes terminate in centromeric arrays, indicating that these motifs play a role not only in segregation, but also in protecting the linear integrity and full lengths of chromosomes. CONCLUSIONS: Despite strong conservation of canonical telomeres, our results show that they can be substituted by more complex, species-specific sequences, as represented by centromeres. The assembly provides a robust platform for investigations that require complete genome representation.


Assuntos
Cromossomos/metabolismo , Elementos de DNA Transponíveis/genética , Genoma Helmíntico , Hymenolepis/genética , Sintenia , Animais , Centrômero/metabolismo , Segregação de Cromossomos
5.
BMC Genomics ; 21(1): 346, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380953

RESUMO

BACKGROUND: Reference genome and transcriptome assemblies of helminths have reached a level of completion whereby secondary analyses that rely on accurate gene estimation or syntenic relationships can be now conducted with a high level of confidence. Recent public release of the v.3 assembly of the mouse bile-duct tapeworm, Hymenolepis microstoma, provides chromosome-level characterisation of the genome and a stabilised set of protein coding gene models underpinned by bioinformatic and empirical data. However, interactome data have not been produced. Conserved protein-protein interactions in other organisms, termed interologs, can be used to transfer interactions between species, allowing systems-level analysis in non-model organisms. RESULTS: Here, we describe a probabilistic, integrated network of interologs for the H. microstoma proteome, based on conserved protein interactions found in eukaryote model species. Almost a third of the 10,139 gene models in the v.3 assembly could be assigned interaction data and assessment of the resulting network indicates that topologically-important proteins are related to essential cellular pathways, and that the network clusters into biologically meaningful components. Moreover, network parameters are similar to those of single-species interaction networks that we constructed in the same way for S. cerevisiae, C. elegans and H. sapiens, demonstrating that information-rich, system-level analyses can be conducted even on species separated by a large phylogenetic distance from the major model organisms from which most protein interaction evidence is based. Using the interolog network, we then focused on sub-networks of interactions assigned to discrete suites of genes of interest, including signalling components and transcription factors, germline multipotency genes, and genes differentially-expressed between larval and adult worms. Results show not only an expected bias toward highly-conserved proteins, such as components of intracellular signal transduction, but in some cases predicted interactions with transcription factors that aid in identifying their target genes. CONCLUSIONS: With key helminth genomes now complete, systems-level analyses can provide an important predictive framework to guide basic and applied research on helminths and will become increasingly informative as new protein-protein interaction data accumulate.


Assuntos
Hymenolepis/genética , Mapeamento de Interação de Proteínas , Proteoma/genética , Animais , Bases de Dados Genéticas , Eucariotos/classificação , Eucariotos/genética , Eucariotos/metabolismo , Redes Reguladoras de Genes , Genoma Helmíntico/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Hymenolepis/classificação , Hymenolepis/metabolismo , Probabilidade
6.
Syst Parasitol ; 97(3): 285-296, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328809

RESUMO

Chimaeras, or ratfishes, are the only extant group of holocephalan fishes and are the sole host group of gyrocotylidean cestodes, which represent a sister group of the true tapeworms (Eucestoda). These unique, non-segmented cestodes have been known since the 1850s and multiple species and genera have been erected despite a general agreement that the delineation of species on the basis of morphology is effectively impossible. Thus, in the absence of molecular studies, the validity of gyrocotylid taxa and their specific host associations has remained highly speculative. Here we report the presence of Gyrocotyle spp. from rarely-caught deep-sea chimaeras collected in the North-East Atlantic, and describe two new species: G. haffii n. sp. from the bent-nose chimaera, Harriota raleighana Goode & Bean, and G. discoveryi n. sp. from the large-eyed rabbit fish, Hydrolagus mirabilis (Collett). Nuclear ribosomal sequence data were generated for individual parasites taken from different host species collected on different dates and from different localities and were combined with previously published sequences. Phylogenetic analyses supported the recognition of independent lineages and clusters, indicative of species, but were indecisive in recovering the root of the tree in analyses that included non-gyrocotylid outgroup taxa. The molecular data reveal variation not reflected in morphology and point to a complex picture of genetic divergence shaped by both isolation and migration in the deep-sea environment.


Assuntos
Cestoides/classificação , Cestoides/genética , Peixes/parasitologia , Filogenia , Animais , Oceano Atlântico , DNA de Helmintos/genética , Variação Genética , Especificidade da Espécie
7.
Int J Parasitol ; 49(3-4): 211-223, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30677390

RESUMO

Tapeworms (cestodes) of the genus Hymenolepis are the causative agents of hymenolepiasis, a neglected zoonotic disease. Hymenolepis nana is the most prevalent human tapeworm, especially affecting children. The genomes of Hymenolepis microstoma and H. nana have been recently sequenced and assembled. MicroRNAs (miRNAs), a class of small non-coding RNAs, are principle regulators of gene expression at the post-transcriptional level and are involved in many different biological processes. In previous work, we experimentally identified miRNA genes in the cestodes Echinococcus, Taenia and Mesocestoides. However, current knowledge about miRNAs in Hymenolepis is limited. In this work we described for the first known time the expression profile of the miRNA complement in H. microstoma, and discovered miRNAs in H. nana. We found a reduced complement of 37 evolutionarily conserved miRNAs, putatively reflecting their low morphological complexity and parasitic lifestyle. We found high expression of a few miRNAs in the larval stage of H. microstoma that are conserved in other cestodes, suggesting that these miRNAs may have important roles in development, survival and for host-parasite interplay. We performed a comparative analysis of the identified miRNAs across the Cestoda and showed that most of the miRNAs in Hymenolepis are located in intergenic regions, implying that they are independently transcribed. We found a Hymenolepis-specific cluster composed of three members of the mir-36 family. Also, we found that one of the neighboring genes of mir-10 was a Hox gene as in most bilaterial species. This study provides a valuable resource for further experimental research in cestode biology that might lead to improved detection and control of these neglected parasites. The comprehensive identification and expression analysis of Hymenolepis miRNAs can help to identify novel biomarkers for diagnosis and/or novel therapeutic targets for the control of hymenolepiasis.


Assuntos
Perfilação da Expressão Gênica , Hymenolepis/genética , MicroRNAs/análise , MicroRNAs/genética , Análise de Sequência de RNA , Animais
8.
Evodevo ; 9: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455861

RESUMO

BACKGROUND: Tapeworms are agents of neglected tropical diseases responsible for significant health problems and economic loss. They also exhibit adaptations to a parasitic lifestyle that confound comparisons of their development with other animals. Identifying the genetic factors regulating their complex ontogeny is essential to understanding unique aspects of their biology and for advancing novel therapeutics. Here we use RNA sequencing to identify up-regulated signalling components, transcription factors and post-transcriptional/translational regulators (genes of interest, GOI) in the transcriptomes of Larvae and different regions of segmented worms in the tapeworm Hymenolepis microstoma and combine this with spatial gene expression analyses of a selection of genes. RESULTS: RNA-seq reads collectively mapped to 90% of the > 12,000 gene models in the H. microstoma v.2 genome assembly, demonstrating that the transcriptome profiles captured a high percentage of predicted genes. Contrasts made between the transcriptomes of Larvae and whole, adult worms, and between the Scolex-Neck, mature strobila and gravid strobila, resulted in 4.5-30% of the genes determined to be differentially expressed. Among these, we identified 190 unique GOI up-regulated in one or more contrasts, including a large range of zinc finger, homeobox and other transcription factors, components of Wnt, Notch, Hedgehog and TGF-ß/BMP signalling, and post-transcriptional regulators (e.g. Boule, Pumilio). Heatmap clusterings based on overall expression and on select groups of genes representing 'signals' and 'switches' showed that expression in the Scolex-Neck region is more similar to that of Larvae than to the mature or gravid regions of the adult worm, which was further reflected in large overlap of up-regulated GOI. CONCLUSIONS: Spatial expression analyses in Larvae and adult worms corroborated inferences made from quantitative RNA-seq data and in most cases indicated consistency with canonical roles of the genes in other animals, including free-living flatworms. Recapitulation of developmental factors up-regulated during larval metamorphosis suggests that strobilar growth involves many of the same underlying gene regulatory networks despite the significant disparity in developmental outcomes. The majority of genes identified were investigated in tapeworms for the first time, setting the stage for advancing our understanding of developmental genetics in an important group of flatworm parasites.

9.
Ecohealth ; 14(Suppl 1): 106-116, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26957436

RESUMO

The success of any population translocation programme relies heavily on the measures implemented to control and monitor the spread of disease. Without these measures, programmes run the risk of releasing immunologically naïve species or, more dangerously, introducing novel infectious agents to native populations. As a precaution, a reintroduction programme for the common or hazel dormouse, Muscardinus avellanarius, in England screens dormice before release following captive breeding. Using PCR sequencing of a range of genes, we tested whether the same species of tapeworm(s) were present in captive and free-living dormice. Whilst only Rodentolepis straminea were identified in free-living dormice, cestode ova found in a captive individual produced a molecular match closely related to Hymenolepis microstoma and a previously unrecorded Rodentolepis species. To prevent putting at risk the free-living population, we recommended the continued treatment of dormice showing tapeworm infection before release. Our work demonstrates how molecular techniques can be used to inform reintroduction programmes, reduce risk from disease and increase chances of reintroduction success.


Assuntos
Cestoides/patogenicidade , Myoxidae/parasitologia , Animais , Cestoides/genética , Inglaterra , Parasitos , Reação em Cadeia da Polimerase
10.
Proc Biol Sci ; 283(1831)2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27226467

RESUMO

Australian spiny mountain crayfish (Euastacus, Parastacidae) and their ecotosymbiotic temnocephalan flatworms (Temnocephalida, Platyhelminthes) may have co-occurred and interacted through deep time, during a period of major environmental change. Therefore, reconstructing the history of their association is of evolutionary, ecological, and conservation significance. Here, time-calibrated Bayesian phylogenies of Euastacus species and their temnocephalans (Temnohaswellia and Temnosewellia) indicate near-synchronous diversifications from the Cretaceous. Statistically significant cophylogeny correlations between associated clades suggest linked evolutionary histories. However, there is a stronger signal of codivergence and greater host specificity in Temnosewellia, which co-occurs with Euastacus across its range. Phylogeography and analyses of evolutionary distinctiveness (ED) suggest that regional differences in the impact of climate warming and drying had major effects both on crayfish and associated temnocephalans. In particular, Euastacus and Temnosewellia show strong latitudinal gradients in ED and, conversely, in geographical range size, with the most distinctive, northern lineages facing the greatest risk of extinction. Therefore, environmental change has, in some cases, strengthened ecological and evolutionary associations, leaving host-specific temnocephalans vulnerable to coextinction with endangered hosts. Consequently, the extinction of all Euastacus species currently endangered (75%) predicts coextinction of approximately 60% of the studied temnocephalans, with greatest loss of the most evolutionarily distinctive lineages.


Assuntos
Astacoidea/parasitologia , Evolução Biológica , Turbelários/fisiologia , Animais , Proteínas de Artrópodes/genética , Astacoidea/genética , Austrália , Teorema de Bayes , DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Filogeografia , Análise de Sequência de DNA , Turbelários/genética
11.
BMC Biol ; 14: 10, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941070

RESUMO

BACKGROUND: Early developmental patterns of flatworms are extremely diverse and difficult to compare between distant groups. In parasitic flatworms, such as tapeworms, this is confounded by highly derived life cycles involving indirect development, and even the true orientation of the tapeworm antero-posterior (AP) axis has been a matter of controversy. In planarians, and metazoans generally, the AP axis is specified by the canonical Wnt pathway, and we hypothesized that it could also underpin axial formation during larval metamorphosis in tapeworms. RESULTS: By comparative gene expression analysis of Wnt components and conserved AP markers in the tapeworms Echinococcus multilocularis and Hymenolepis microstoma, we found remarkable similarities between the early stages of larval metamorphosis in tapeworms and late embryonic and adult development in planarians. We demonstrate posterior expression of specific Wnt factors during larval metamorphosis and show that scolex formation is preceded by localized expression of Wnt inhibitors. In the highly derived larval form of E. multilocularis, which proliferates asexually within the mammalian host, we found ubiquitous expression of posterior Wnt factors combined with localized expression of Wnt inhibitors that correlates with the asexual budding of scoleces. As in planarians, muscle cells are shown to be a source of secreted Wnt ligands, providing an explanation for the retention of a muscle layer in the immotile E. multilocularis larva. CONCLUSIONS: The strong conservation of gene expression between larval metamorphosis in tapeworms and late embryonic development in planarians suggests, for the first time, a homologous developmental period across this diverse phylum. We postulate these to represent the phylotypic stages of these flatworm groups. Our results support the classical notion that the scolex is the true anterior end of tapeworms. Furthermore, the up-regulation of Wnt inhibitors during the specification of multiple anterior poles suggests a mechanism for the unique asexual reproduction of E. multilocularis larvae.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/genética , Hymenolepis/crescimento & desenvolvimento , Proteínas Wnt/genética , Animais , Echinococcus multilocularis/genética , Echinococcus multilocularis/ultraestrutura , Hymenolepis/genética , Hymenolepis/ultraestrutura , Metamorfose Biológica
13.
N Engl J Med ; 373(19): 1845-52, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26535513

RESUMO

Neoplasms occur naturally in invertebrates but are not known to develop in tapeworms. We observed nests of monomorphic, undifferentiated cells in samples from lymph-node and lung biopsies in a man infected with the human immunodeficiency virus (HIV). The morphologic features and invasive behavior of the cells were characteristic of cancer, but their small size suggested a nonhuman origin. A polymerase-chain-reaction (PCR) assay targeting eukaryotes identified Hymenolepis nana DNA. Although the cells were unrecognizable as tapeworm tissue, immunohistochemical staining and probe hybridization labeled the cells in situ. Comparative deep sequencing identified H. nana structural genomic variants that are compatible with mutations described in cancer. Invasion of human tissue by abnormal, proliferating, genetically altered tapeworm cells is a novel disease mechanism that links infection and cancer.


Assuntos
Transformação Celular Neoplásica , Himenolepíase/patologia , Hymenolepis nana/genética , Mutação , Adulto , Animais , Análise Mutacional de DNA , DNA de Helmintos/isolamento & purificação , Humanos , Hymenolepis nana/citologia , Masculino , Microscopia Eletrônica de Transmissão , Filogenia , Reação em Cadeia da Polimerase
14.
Int J Parasitol ; 45(2-3): 167-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25444860

RESUMO

Cetaceans harbour a unique fauna of digeneans whose origin and relationships have sparked considerable debate during recent decades. Disparity in the species reported indicates that they do not share close affinities, but their unusual morphology has made their taxonomic identities and phylogenetic positions uncertain. Here we use sequence data to investigate the phylogenetic relationships of the main species of flukes infecting cetaceans. We sequenced the 18S, 28S and internal transcribed spacer 2 rDNA of digenean species representing all known families reported from cetaceans: Braunina cordiformis (Brauninidae), Ogmogaster antarcticus (Notocotylidae), Pholeter gastrophilus (Heterophyidae), and Campula oblonga, Nasitrema sp. and Oschmarinella rochebruni (Brachycladiidae). The phylogenetic position of the taxa was estimated by Bayesian inference and maximum likelihood incorporating published sequences of 177 species of Digenea. Further Bayesian and maximum likelihood analyses were performed with sequences of 14 Heterophyidae and Opisthorchiidae taxa, incorporating new sequences of P. gastrophilus. Species nominally assigned to the Brachycladiidae formed a clade that was embedded among species of the Acanthocolpidae, thus making the latter family paraphyletic. Braunina cordiformis formed a sister lineage to the Strigeidae and Diplostomidae, whereas O. antarcticus was placed within the Notocotylidae, in agreement with the previous taxonomy of this genus. Similarly, P. gastrophilus was placed within the Heterophyidae as originally described. Our results suggest a paraphyletic relationship between the Heterophyidae and Opisthorchiidae, mirroring the uncertain taxonomic placement of P. gastrophilus, which has been assigned to both families in the past. The digenean families involved are parasites of fish-eating birds and mammals (i.e. Strigeidae, Diplostomidae and Heterophyidae), parasites of marine fish (i.e. Acanthocolpidae) and other herbivorous aquatic birds and mammals (i.e. Notocotylidae). The phylogenetic positions of these taxa indicate that the digenean fauna of cetaceans may have been acquired through independent host-capture events, with two clades showing subsequent diversification exclusively among marine mammals.


Assuntos
Biodiversidade , Cetáceos/parasitologia , Trematódeos/classificação , Trematódeos/genética , Animais , Análise por Conglomerados , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Trematódeos/isolamento & purificação
15.
Folia Parasitol (Praha) ; 61(4): 331-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25185404

RESUMO

Tapeworms of the order Spathebothriidea Wardle et McLeod, 1952 (Cestoda) are reviewed. Molecular data made it possible to assess, for the first time, the phylogenetic relationships of all genera and to confirm the validity of Bothrimonus Duvernoy, 1842, Diplocotyle Krabbe, 1874 and Didymobothrium Nybelin, 1922. A survey of all species considered to be valid is provided together with new data on egg and scolex morphology and surface ultrastructure (i.e. microtriches). The peculiar morphology of the members of this group, which is today represented by five effectively monotypic genera whose host associations and geographical distribution show little commonality, indicate that it is a relictual group that was once diverse and widespread. The order potentially represents the earliest branch of true tapeworms (i.e. Eucestoda) among extant forms.


Assuntos
Cestoides/genética , Cestoides/fisiologia , Óvulo/classificação , Animais , Cestoides/ultraestrutura , Óvulo/ultraestrutura , Filogenia , Especificidade da Espécie
16.
Int J Parasitol ; 44(1): 55-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275646

RESUMO

Novel molecular data are presented to resolve the long-standing issue of the non-monophyly of the elasmobranch-hosted tapeworm order Tetraphyllidea relative to the other acetabulate eucestode orders. Bayesian inference analyses of various combinations of full ssrDNA, and full or partial lsrDNA (D1-D3), sequence data, which included 134 species representing 97 genera across the 15 eucestode orders, were conducted. New ssrDNA data were generated for 82 species, partial lsrDNA data for 53 species, and full lsrDNA data for 29 species. The monophyly of each of the elasmobranch-hosted orders Cathetocephalidea, Litobothriidea, Lecanicephalidea and Rhinebothriidea was confirmed, as was the non-monophyly of the Tetraphyllidea. Two relatively stable groups of tetraphyllidean taxa emerged and are hereby designated as new orders. The Onchoproteocephalidea n. ord. is established to recognise the integrated nature of one undescribed and 10 described genera of hook-bearing tetraphyllideans, previously placed in the family Onchobothriidae, with the members of the order Proteocephalidea. The Phyllobothriidea n. ord. is established for a subset of 12 non-hooked genera characterised by scoleces bearing four bothridia each with an anterior accessory sucker; most parasitise sharks and have been assigned to the Phyllobothriidae at one time or another. Tentative ordinal placements are suggested for eight additional genera; placements for the remaining tetraphyllidean genera have not yet emerged. We propose that these 17 genera remain in the "Tetraphyllidea". Among these, particularly labile across analyses were Anthobothrium, Megalonchos, Carpobothrium, Calliobothrium and Caulobothrium. The unique association of Chimaerocestus with holocephalans, rather than with elasmobranchs, appears to represent a host-switching event. Both of the non-elasmobranch hosted clades of acetabulate cestodes (i.e. Proteocephalidea and Cyclophyllidea and their kin) appear to have had their origins with elasmobranch cestodes. Across analyses, the sister group to the clade of "terrestrial" cestode orders was found to be an elasmobranch-hosted genus, as was the sister to the freshwater fish- and tetrapod-hosted Proteocephalidea. Whilst further data are required to resolve outstanding nomenclatural and phylogenetic issues, the present analyses contribute significantly to an understanding of the evolutionary radiation of the entire Cestoda. Clearly, elasmobranch tapeworms comprise the backbone of cestode phylogeny.


Assuntos
Cestoides/classificação , Cestoides/genética , DNA Ribossômico/genética , Elasmobrânquios/parasitologia , RNA Ribossômico 18S/genética , RNA Ribossômico/genética , Animais , Cestoides/anatomia & histologia , Cestoides/isolamento & purificação , Infecções por Cestoides/parasitologia , Infecções por Cestoides/veterinária , DNA Ribossômico/química , Doenças dos Peixes/parasitologia , Dados de Sequência Molecular , Análise de Sequência de DNA
17.
Int J Parasitol ; 43(8): 641-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23639265

RESUMO

Hymenolepis microstoma, the mouse bile-duct tapeworm, is a classical rodent-hosted model that provides easy laboratory access to all stages of the life cycle. Recent characterisation of its genome has greatly advanced its utility for molecular research, albeit contemporary techniques such as those for assaying gene function have yet to be developed in the system. Here we present research on the development of RNA-mediated gene suppression via RNA interference (RNAi), and on in vitro culture of the enteric, adult phase of the life cycle to support this work. We demonstrate up to 80% quantitative suppression of a Hox transcript via soaking activated juvenile worms with double-stranded RNAs. However, we were unable to achieve segmentation of the worms in culture despite extensive manipulations of the culture media and supplements, preventing functional interpretation. An alternative, in vivo approach to RNAi was also tested by exposing cysticercoids prior to inoculation in mice, but fluorescent labelling showed that the RNAs did not sufficiently penetrate the cyst body and no difference in expression was found between exposed and control groups grown in vivo. Genomic and transcriptomic data revealed that H. microstoma has two orthologs each of Dicer, Drosha and Ago-1-like genes and that expression of one of the Ago-1 genes appears exclusive to germline development, suggesting that two or more independent RNA-mediated pathways are in operation. These studies demonstrate the viability of RNAi in H. microstoma and extend the utility of the model for research in the genomic era.


Assuntos
Regulação da Expressão Gênica , Hymenolepis/crescimento & desenvolvimento , Hymenolepis/genética , Biologia Molecular/métodos , Parasitologia/métodos , Interferência de RNA , Animais , Meios de Cultura/química , Camundongos , Supressão Genética
18.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23485966

RESUMO

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Assuntos
Adaptação Fisiológica/genética , Cestoides/genética , Genoma Helmíntico/genética , Parasitos/genética , Animais , Evolução Biológica , Cestoides/efeitos dos fármacos , Cestoides/fisiologia , Infecções por Cestoides/tratamento farmacológico , Infecções por Cestoides/metabolismo , Sequência Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helmintos/genética , Genes Homeobox/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Hymenolepis/genética , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular , Parasitos/efeitos dos fármacos , Parasitos/fisiologia , Proteoma/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Taenia solium/genética
19.
Parasitology ; 139(10): 1346-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22717011

RESUMO

The 'pygmaeus' microphallids (MPG) are a closely related group of 6 digenean (Platyhelminthes: Trematoda) Microphallus species that share a derived 2-host life cycle in which metacercariae develop inside daughter sporocysts in the intermediate host (intertidal and subtidal gastropods, mostly of the genus Littorina) and are infective to marine birds (ducks, gulls and waders). Here we investigate MPG transmission patterns in coastal ecosystems and their diversification with respect to historical events, host switching and host-parasite co-evolution. Species phylogenies and phylogeographical reconstructions are estimated on the basis of 28S, ITS1 and ITS2 rDNA data and we use a combination of analyses to test the robustness and stability of the results, and the likelihood of alternative biogeographical scenarios. Results demonstrate that speciation within the MPG was not associated with co-speciation with either the first intermediate or final hosts, but rather by host-switching events coincident with glacial cycles in the Northern Hemisphere during the late Pliocene/Pleistocene. These resulted in the expansion of Pacific biota into the Arctic-North Atlantic and periodic isolation of Atlantic and Pacific populations. Thus we hypothesize that contemporary species of MPG and their host associations resulted from fragmentation of populations in regional refugia during stadials, and their subsequent range expansion from refugial centres during interstadials.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Estágios do Ciclo de Vida , Filogenia , Trematódeos/classificação , Trematódeos/genética , Infecções por Trematódeos/parasitologia , Animais , Organismos Aquáticos/parasitologia , Regiões Árticas , Doenças das Aves/parasitologia , Doenças das Aves/transmissão , Aves , DNA Ribossômico/genética , Dados de Sequência Molecular , Infecções por Trematódeos/transmissão
20.
Int J Parasitol ; 42(3): 259-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22366732

RESUMO

Caryophyllidean cestodes (Platyhelminthes) represent an unusual group of tapeworms lacking serially repeated body parts that potentially diverged from the common ancestor of the Eucestoda prior to the evolution of segmentation. Here we evaluate the utility of two nuclear and two mitochondrial molecular markers (ssrDNA and lsrDNA, nad3 and cox1) for use in circumscribing generic boundaries and estimating interrelationships in the group. We show that these commonly employed markers do not contain sufficient signal to infer well-supported phylogenetic estimates due to substitution saturation. Moreover, we detected multiple trnK+nad3+trnS+trnW+cox1 haplotypes within individuals, indicating a history of gene exchange between the mitochondrial and nuclear genomes. The presence of such nuclear paralogs (i.e. numts), to our knowledge described here in cestodes for the first time, together with the results of phylogenetic, saturation and split-decomposition analyses all suggest that finding informative markers for estimating caryophyllidean evolution is unusually problematic in comparison to other major lineages of tapeworms.


Assuntos
Núcleo Celular/genética , Cestoides/classificação , Cestoides/genética , Filogenia , Animais , Marcadores Genéticos , Proteínas de Helminto/genética , Proteínas Mitocondriais/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...