Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38676249

RESUMO

As a result of technological advancements, functional capacity assessments, such as the 6-minute walk test, can be performed remotely, at home and in the community. Current studies, however, tend to overlook the crucial aspect of data quality, often limiting their focus to idealised scenarios. Challenging conditions may arise when performing a test given the risk of collecting poor-quality GNSS signal, which can undermine the reliability of the results. This work shows the impact of applying filtering rules to avoid noisy samples in common algorithms that compute the walked distance from positioning data. Then, based on signal features, we assess the reliability of the distance estimation using logistic regression from the following two perspectives: error-based analysis, which relates to the estimated distance error, and user-based analysis, which distinguishes conventional from unconventional tests based on users' previous annotations. We highlight the impact of features associated with walked path irregularity and direction changes to establish data quality. We evaluate features within a binary classification task and reach an F1-score of 0.93 and an area under the curve of 0.97 for the user-based classification. Identifying unreliable tests is helpful to clinicians, who receive the recorded test results accompanied by quality assessments, and to patients, who can be given the opportunity to repeat tests classified as not following the instructions.

2.
BMJ Open ; 13(12): e077766, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38154904

RESUMO

INTRODUCTION: The clinical assessment of Parkinson's disease (PD) symptoms can present reliability issues and, with visits typically spaced apart 6 months, can hardly capture their frequent variability. Smartphones and smartwatches along with signal processing and machine learning can facilitate frequent, remote, reliable and objective assessments of PD from patients' homes. AIM: To investigate the feasibility, compliance and user experience of passively and actively measuring symptoms from home environments using data from sensors embedded in smartphones and a wrist-wearable device. METHODS AND ANALYSIS: In an ongoing clinical feasibility study, participants with a confirmed PD diagnosis are being recruited. Participants perform activity tests, including Timed Up and Go (TUG), tremor, finger tapping, drawing and vocalisation, once a week for 2 months using the Mobistudy smartphone app in their homes. Concurrently, participants wear the GENEActiv wrist device for 28 days to measure actigraphy continuously. In addition to using sensors, participants complete the Beck's Depression Inventory, Non-Motor Symptoms Questionnaire (NMSQuest) and Parkinson's Disease Questionnaire (PDQ-8) questionnaires at baseline, at 1 month and at the end of the study. Sleep disorders are assessed through the Parkinson's Disease Sleep Scale-2 questionnaire (weekly) and a custom sleep quality daily questionnaire. User experience questionnaires, Technology Acceptance Model and User Version of the Mobile Application Rating Scale, are delivered at 1 month. Clinical assessment (Movement Disorder Society-Unified Parkinson Disease Rating Scale (MDS-UPDRS)) is performed at enrollment and the 2-month follow-up visit. During visits, a TUG test is performed using the smartphone and the G-Walk motion sensor as reference device. Signal processing and machine learning techniques will be employed to analyse the data collected from Mobistudy app and the GENEActiv and correlate them with the MDS-UPDRS. Compliance and user aspects will be informing the long-term feasibility. ETHICS AND DISSEMINATION: The study received ethical approval by the Swedish Ethical Review Authority (Etikprövningsmyndigheten), with application number 2022-02885-01. Results will be reported in peer-reviewed journals and conferences. Results will be shared with the study participants.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Doença de Parkinson/diagnóstico , Projetos Piloto , Reprodutibilidade dos Testes , Aprendizado de Máquina
3.
Sensors (Basel) ; 23(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37420850

RESUMO

User location is becoming an increasingly common and important feature for a wide range of services. Smartphone owners increasingly use location-based services, as service providers add context-enhanced functionality such as car-driving routes, COVID-19 tracking, crowdedness indicators, and suggestions for nearby points of interest. However, positioning a user indoors is still problematic due to the fading of the radio signal caused by multipath and shadowing, where both have complex dependencies on the indoor environment. Location fingerprinting is a common positioning method where Radio Signal Strength (RSS) measurements are compared to a reference database of previously stored RSS values. Due to the size of the reference databases, these are often stored in the cloud. However, server-side positioning computations make preserving the user's privacy problematic. Given the assumption that a user does not want to communicate his/her location, we pose the question of whether a passive system with client-side computations can substitute fingerprinting-based systems, which commonly use active communication with a server. We compared two passive indoor location systems based on multilateration and sensor fusion using an Unscented Kalman Filter (UKF) with fingerprinting and show how these may provide accurate indoor positioning without compromising the user's privacy in a busy office environment.


Assuntos
COVID-19 , Humanos , Feminino , Masculino , Comunicação , Bases de Dados Factuais , Privacidade , Smartphone
4.
Sensors (Basel) ; 21(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884081

RESUMO

Quantifying the number of occupants in an indoor space is useful for a wide variety of applications. Attempts have been made at solving the task using passive infrared (PIR) motion sensor data together with supervised learning methods. Collecting a large labeled dataset containing both PIR motion sensor data and ground truth people count is however time-consuming, often requiring one hour of observation for each hour of data gathered. In this paper, a method is proposed for generating such data synthetically. A simulator is developed in the Unity game engine capable of producing synthetic PIR motion sensor data by detecting simulated occupants. The accuracy of the simulator is tested by replicating a real-world meeting room inside the simulator and conducting an experiment where a set of choreographed movements are performed in the simulated environment as well as the real room. In 34 out of 50 tested situations, the output from the simulated PIR sensors is comparable to the output from the real-world PIR sensors. The developed simulator is also used to study how a PIR sensor's output changes depending on where in a room a motion is carried out. Through this, the relationship between sensor output and spatial position of a motion is discovered to be highly non-linear, which highlights some of the difficulties associated with mapping PIR data to occupancy count.


Assuntos
Movimento , Humanos , Movimento (Física) , Amplitude de Movimento Articular
5.
Front Digit Health ; 3: 675754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977856

RESUMO

The reliance on data donation from citizens as a driver for research, known as citizen science, has accelerated during the Sars-Cov-2 pandemic. An important enabler of this is Internet of Things (IoT) devices, such as mobile phones and wearable devices, that allow continuous data collection and convenient sharing. However, potentially sensitive health data raises privacy and security concerns for citizens, which research institutions and industries must consider. In e-commerce or social network studies of citizen science, a privacy calculus related to user perceptions is commonly developed, capturing the information disclosure intent of the participants. In this study, we develop a privacy calculus model adapted for IoT-based health research using citizen science for user engagement and data collection. Based on an online survey with 85 participants, we make use of the privacy calculus to analyse the respondents' perceptions. The emerging privacy personas are clustered and compared with previous research, resulting in three distinct personas which can be used by designers and technologists who are responsible for developing suitable forms of data collection. These are the 1) Citizen Science Optimist, the 2) Selective Data Donor, and the 3) Health Data Controller. Together with our privacy calculus for citizen science based digital health research, the three privacy personas are the main contributions of this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...