Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(3): 840-848, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38235960

RESUMO

In semiconductor devices, hydrogen has traditionally been viewed as a panacea for defects, being adept at neutralizing dangling bonds and consequently purging the related states from the band gap. With amorphous silicon nitride (a-Si3N4)─a material critical for electronic, optical, and mechanical applications─this belief holds true as hydrogen passivates both silicon and nitrogen dangling bonds. However, there is more to the story. Our density functional theory calculations unveil hydrogen's multifaceted role upon incorporation in a-Si3N4. On the "Jekyll" side, hydrogen atoms are indeed restorative, healing coordination defects in a-Si3N4. However, "Hyde" emerges as hydrogen induces Si-N bond breaking, particularly in strained regions of the amorphous network. Beyond these dual roles, our study reveals an intricate balance between hydrogen defect centers and intrinsic charge traps that already exist in pristine a-Si3N4: the excess charges provided by the H atoms result in charging of the a-Si3N4 dielectric layer.

2.
Angew Chem Int Ed Engl ; 62(5): e202213806, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36456529

RESUMO

The application of Li-rich layered oxides is hindered by their dramatic capacity and voltage decay on cycling. This work comprehensively studies the mechanistic behaviour of cobalt-free Li1.2 Ni0.2 Mn0.6 O2 and demonstrates the positive impact of two-phase Ru doping. A mechanistic transition from the monoclinic to the hexagonal behaviour is found for the structural evolution of Li1.2 Ni0.2 Mn0.6 O2, and the improvement mechanism of Ru doping is understood using the combination of in operando and post-mortem synchrotron analyses. The two-phase Ru doping improves the structural reversibility in the first cycle and restrains structural degradation during cycling by stabilizing oxygen (O2- ) redox and reducing Mn reduction, thus enabling high structural stability, an extraordinarily stable voltage (decay rate <0.45 mV per cycle), and a high capacity-retention rate during long-term cycling. The understanding of the structure-function relationship of Li1.2 Ni0.2 Mn0.6 O2 sheds light on the selective doping strategy and rational materials design for better-performance Li-rich layered oxides.

3.
Small ; 18(43): e2200177, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36026547

RESUMO

Hard carbon (HC) anodes together with ethylene carbonate (EC)-based electrolytes have shown significant promise for high-performing sodium-ion batteries. However, questions remain in relation to the initial contact between the carbon surface and the EC molecules. The surface of the HC anode is complex and can contain both flat pristine carbon surfaces, curvature, nanoscale roughness, and heteroatom defects. Combining density functional theory and experiments, the effect of different carbon surface motifs and defects on EC adsorption are probed, concluding that EC itself does not block any sodium storage sites. Nevertheless, the EC breakdown products do show strong adsorption on the same carbon surface motifs, indicating that the carbon surface defect sites can become occupied by the EC breakdown products, leading to competition between the sodium and EC fragments. Furthermore, it is shown that the EC fragments can react with a carbon vacancy or oxygen defect to give rise to CO2 formation and further oxygen functionalization of the carbon surface. Experimental characterization of two HC materials with different microstructure and defect concentrations further confirms that a significant concentration of oxygen-containing defects and disorder leads to a thicker solid electrolyte interphase, highlighting the significant effect of atomic-scale carbon structure on EC interaction.

4.
Small ; 18(23): e2108124, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434905

RESUMO

Solid-state electrolytes (SSEs) have been thrust into the limelight for the revival of energy-dense lithium metal batteries, but still face the challenge of failure caused by the dendrite penetration. Mounting evidence indicates that dendrite penetration is related to the mechanical failure in SSEs, which calls for mechanical engineering to tackle this problem. This work reports a proof of concept that ion implantation induced surface compressive stress enables resistance in the dendrite penetration. A deterministic sequential multiple ion energies implantation is used to generate compressive stress, with implanted Xe ions distributed in a range of 160-600 Å from the surface. The symmetric lithium cells show that pellets with an implantation dose of 1013 Xe cm-2 exhibit stable stripping/plating cycles and extended lifespan, while a lower dose of 1012 Xe cm-2 cannot create sufficient stress to prevent dendrite penetration, and an excessive dose of 1014 Xe cm-2 leads to structural destruction and a decrease in stress. This improved performance is attributed to the induced surface compressive stress balanced over crystal grains, which is confirmed by grazing incidence diffraction techniques. The author's efforts demonstrate the usefulness of surface compressive stress to suppress dendrite penetration, offering more insight into rational stress-strain engineering as opposed to empirical optimization.


Assuntos
Lítio , Xenônio , Dendritos , Eletrólitos , Íons
5.
Angew Chem Int Ed Engl ; 61(27): e202201969, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467801

RESUMO

Oxides composed of an oxygen framework and interstitial cations are promising cathode materials for lithium-ion batteries. However, the instability of the oxygen framework under harsh operating conditions results in fast battery capacity decay, due to the weak orbital interactions between cations and oxygen (mainly 3d-2p interaction). Here, a robust and endurable oxygen framework is created by introducing strong 4s-2p orbital hybridization into the structure using LiNi0.5 Mn1.5 O4 oxide as an example. The modified oxide delivers extraordinarily stable battery performance, achieving 71.4 % capacity retention after 2000 cycles at 1 C. This work shows that an orbital-level understanding can be leveraged to engineer high structural stability of the anion oxygen framework of oxides. Moreover, the similarity of the oxygen lattice between oxide electrodes makes this approach extendable to other electrodes, with orbital-focused engineering a new avenue for the fundamental modification of battery materials.

6.
J Chem Inf Model ; 61(7): 3376-3385, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34161083

RESUMO

Liquid-liquid extraction (LLE) is an important technique to separate aromatics from aliphatics since these compounds have very similar boiling points and cannot be separated by distillation. Ionic liquids (ILs) are considered as potential extractants to extract aromatics from aliphatics. In this paper, molecular dynamics (MD) simulations were used to predict the extraction property (i.e., capacity and selectivity) of ILs for the LLE of aromatics from aliphatics. The extraction properties of seven different ILs including [C2mim][Tf2N], [C2mim][TFO], [C2mim][SCN], [C2mim][DCA], [C2mim][TCM], [C4mim][Tf2N], and [C8mim][Tf2N] were investigated. Results show that ILs with shorter alkyl chain cations and [Tf2N]- anion exhibit better extraction efficiency than other ILs, which is in agreement with previously reported experimental data on the extraction of toluene from aliphatics and further validated the reliability of the proposed model. The binding energies between ILs and organic molecules were calculated by the density functional theory, which help explain the different extraction behaviors of different ILs. The symmetry-adapted perturbation theory analysis was performed to further understand the interaction mechanisms between ILs and organics. Our study shows that the [Tf2N]- anion also has the best extraction capability for heavier aromatics (o-xylene, m-xylene, and p-xylene) from common aliphatics (heptane and octane). The MD modeling approach can be a low-cost in silico tool for the high-throughput fast screening of ILs for the LLE of aromatics from aliphatics.


Assuntos
Líquidos Iônicos , Ânions , Extração Líquido-Líquido , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes
7.
Small ; 17(18): e2007652, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33734590

RESUMO

Hard carbon anodes have shown significant promise for next-generation battery technologies. These nanoporous carbon materials are highly complex and vary in structure depending on synthesis method, precursors, and pyrolysis temperature. Structurally, hard carbons are shown to consist of disordered planar and curved motifs, which have a dramatic impact on anode performance. Here, the impact of position on defect formation energy is explored through density functional theory simulations, employing a mixed planar bulk and curved surface model. At defect sites close to the surface, a dramatic decrease ( ≥ 50%) in defect formation energy is observed for all defects except the nitrogen substitutional defect. These results confirm the experimentally observed enhanced defect concentration at surfaces. Previous studies have shown that defects have a marked impact on metal storage. This work explores the interplay between position and defect type for lithium, sodium, and potassium adsorption. Regardless of defect location, it is found that the energetic contributions to the metal adsorption energies are principally dictated by the defect type and carbon interlayer distance.

8.
Materials (Basel) ; 13(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143293

RESUMO

High capacity electrode materials are the key for high energy density Li-ion batteries (LIB) to meet the requirement of the increased driving range of electric vehicles. Here we report the synthesis of a novel anode material, Bi2MoO6/palm-carbon composite, via a simple hydrothermal method. The composite shows higher reversible capacity and better cycling performance, compared to pure Bi2MoO6. In 0-3 V, a potential window of 100 mA/g current density, the LIB cells based on Bi2MoO6/palm-carbon composite show retention reversible capacity of 664 mAh·g-1 after 200 cycles. Electrochemical testing and ab initio density functional theory calculations are used to study the fundamental mechanism of Li ion incorporation into the materials. These studies confirm that Li ions incorporate into Bi2MoO6 via insertion to the interstitial sites in the MoO6-layer, and the presence of palm-carbon improves the electronic conductivity, and thus enhanced the performance of the composite materials.

9.
Phys Chem Chem Phys ; 22(2): 692-699, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829383

RESUMO

One of the main challenges facing solid oxide fuel cell (SOFC) technology is the need to develop materials capable of functioning at intermediate temperatures (500-800 °C), thereby reducing the costs associated with SOFCs. Here, Sm0.75A0.25MnxCo1-xO2.88 (A = Ca, or Sr) is investigated as a potential new cathode material to substitute the traditional lanthanum-strontium manganate for intermediate temperature SOFCs. Using a combination of density functional theory calculations and molecular dynamics simulations, the crucial parameters for SOFC performance, such as the electronic structure, electronic and ionic conductivity, and thermal expansion coefficient, were evaluated. An evaluation of the results illustrates that the conductivity and thermal match of the materials with the electrolyte is dramatically improved with respect to the existing state-of-the-art.

10.
ACS Appl Mater Interfaces ; 11(39): 36232-36243, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532611

RESUMO

Silica-based resistive random access memory devices have become an active research area due to complementary metal-oxide-semiconductor compatibility and recent dramatic increases in their performance and endurance. In spite of both experimental and theoretical insights gained into the electroforming process, many atomistic aspects of the set and reset operation of these devices are still poorly understood. Recently a mechanism of electroforming process based on the formation of neutral oxygen vacancies (VO0) and interstitial O ions (Oi2-) facilitated by electron injection into the oxide has been proposed. In this work, we extend the description of the bulk (Oi2-) migration to the interface of amorphous SiO2 with the polycrystaline TiN electrode, using density functional theory simulations. The results demonstrate a strong kinetic and thermodynamic drive for the movement of Oi2- to the interface, with dramatically reduced incorporation energies and migration barriers close to the interface. The arrival of Oi2- at the interface is accompanied by preferential oxidation of undercoordinated Ti sites at the interface, forming a Ti-O layer. We investigate how O ions incorporate into a perfect and defective ∑5(012)[100] grain boundary (GB) in TiN oriented perpendicular to the interface. Our simulations demonstrate the preferential incorporation of Oi at defects within the TiN GB and their fast diffusion along a passivated grain boundary. They explain how, as a result of electroforming, the system undergoes very significant structural changes with the oxide being significantly reduced, interface being oxidized, and part of the oxygen leaving the system.

11.
Phys Chem Chem Phys ; 21(18): 9407-9418, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30997472

RESUMO

SmCoO3 is a promising perovskite material for the next generation of intermediate temperature solid oxide fuel cells (SOFC), but its potential application is directly linked to, and dependent on, the presence of dopant ions. Doping on the Co-site is suggested to improve the catalytic and electronic properties of this cathode material. Fe, Mn, Ni, and Cu have been proposed as possible dopants and experimental studies have investigated and confirmed the potential of these materials. Here we present a systematic DFT+U study focused on the changes in electronic, magnetic, and physical properties with B-site doping of SmCoO3 to allow cathode optimization. It is shown that doping generally leads to distortion in the system, thereby inducing different electron occupations of the Co d-orbitals, altering the electronic and magnetic structure. From these calculations, the 0 K electronic conductivity (σe) was obtained, with SmMnxCo1-xO3 having the highest σe, and SmFexCo1-xO3 the lowest σe, in agreement with experiment. We have also investigated the impact of dopant species and concentration on the oxygen vacancy formation energy (Ef), which is related to the ionic conductivity (σO). We found that the Ef values are lowered only when SmCoO3 is doped with Cu or Ni. Finally, thermal expansion coefficients were calculated, with Mn-doping showing the largest decrease at low x and at x = 0.75. Combining these results, it is clear that Mn-doping in the range x = 0.125-0.25 would imbue SmCoO3 with the most favorable properties for IT-SOFC cathode applications.

12.
Nanoscale ; 11(12): 5274-5284, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30843023

RESUMO

In this paper, a computational study of Li, Na, and K adsorption and migration on pristine and defective graphene surfaces is conducted to gain insight into the metal storage and mobility in carbon-based anodes for alkali metal batteries. Atomic level studies of the metal adsorption and migration on the graphene surface can help address the challenges faced in the development of novel alkali metal battery technologies, as these systems act as convenient proxies of the crystalline carbon surface in carbon-based materials including graphite, hard carbons and graphene. The adsorption of Li and K ions on the pristine graphene surface is shown to be more energetically favourable than Na adsorption. A collection of defects expected to be found in carbonaceous materials are investigated in terms of metal storage and mobility, with N- and O-containing defects found to be the dominant defects on these carbon surfaces. Metal adsorption and migration at the defect sites show that defect sites tend to act as metal trapping sites, and metal diffusion around the defects is hindered when compared to the pristine surface. We identify a defect where two C sites are substituted with O and one C site with N as the dominant surface defect, and find that this defect is detrimental to metal migration and hence the battery cycling performance.

13.
Phys Chem Chem Phys ; 19(21): 13960-13969, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28513672

RESUMO

The substitutional doping of Ca2+, Sr2+, and Ba2+ on the Sm-site in the cubic perovskite SmCoO3 is reported to improve both electronic and ionic conductivities for applications as solid oxide fuel cell (SOFC) cathodes. Hence, in this study we have used density functional theory (DFT) calculations to investigate dopant configurations at two different dopant concentrations: 25 and 50%. To preserve the electroneutrality of the system, we have studied two different charge compensation mechanisms: the creation of oxygen vacancies, and electronic holes. After examining the electronic structure, charge density difference, and oxygen vacancy formation energies, we concluded that oxygen vacancy charge compensation is the preferred mechanism to maintain the electroneutrality of the system. Furthermore, we found that the improvement of the electronic conduction is not a direct consequence of the appearance of electron holes, but a result of the distortion of the material, more specifically, the distortion of the Co-O bonds. Finally, molecular dynamics were employed to model ionic conduction and thermal expansion coefficients. It was found that all dopants at both concentrations showed high ionic conduction comparable to experimental results.

14.
J Med Internet Res ; 19(4): e123, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28432040

RESUMO

BACKGROUND: Patients suffering from depression have a high risk of relapse and readmission in the weeks following discharge from inpatient wards. Electronic self-monitoring systems that offer patient-communication features are now available to offer daily support to patients, but the usability, acceptability, and adherence to these systems has only been sparsely investigated. OBJECTIVE: We aim to test the usability, acceptability, adherence, and clinical outcome of a newly developed computer-based electronic self-assessment system (the Daybuilder system) in patients suffering from depression, in the period from discharge until commencing outpatient treatment in the Intensive Outpatient Unit for Affective Disorders. METHODS: Patients suffering from unipolar major depression that were referred from inpatient wards to an intensive outpatient unit were included in this study before their discharge, and were followed for four weeks. User satisfaction was assessed using semiqualitative questionnaires and the System Usability Scale (SUS). Patients were interviewed at baseline and at endpoint with the Hamilton depression rating scale (HAM-D17), the Major Depression Inventory (MDI), and the 5-item World Health Organization Well-Being Index (WHO-5). In this four-week period patients used the Daybuilder system to self-monitor mood, sleep, activity, and medication adherence on a daily basis. The system displayed a graphical representation of the data that was simultaneously displayed to patients and clinicians. Patients were phoned weekly to discuss their data entries. The primary outcomes were usability, acceptability, and adherence to the system. The secondary outcomes were changes in: the electronically self-assessed mood, sleep, and activity scores; and scores from the HAM-D17, MDI, and WHO-5 scales. RESULTS: In total, 76% of enrolled patients (34/45) completed the four-week study. Five patients were readmitted due to relapse. The 34 patients that completed the study entered data for mood on 93.8% of the days (872/930), sleep on 89.8% of the days (835/930), activity on 85.6% of the days (796/930), and medication on 88.0 % of the days (818/930). SUS scores were 86.2 (standard deviation [SD] 9.7) and 79% of the patients (27/34) found that the system lived up to their expectations. A significant improvement in depression severity was found on the HAM-D17 from 18.0 (SD 6.5) to 13.3 (SD 7.3; P<.01), on the MDI from 27.1 (SD 13.1) to 22.1 (SD 12.7; P=.006), and in quality of life on the WHO-5 from 31.3 (SD 22.9) to 43.4 (SD 22.1; P<.001) scales, but not on self-assessed mood (P=.08). Mood and sleep parameters were highly variable from day-to-day. Sleep-offset was significantly delayed from baseline, averaging 48 minutes (standard error 12 minutes; P<.001). Furthermore, when estimating delay of sleep-onset (with sleep quality included in the model) during the study period, this showed a significant negative effect on mood (P=.03). CONCLUSIONS: The Daybuilder systems performed well technically, and patients were satisfied with the system and had high adherence to self-assessments. The dropout rate and the gradual delay in sleep emphasize the need for continued clinical support for these patients, especially when considering sleep guidance.


Assuntos
Assistência Ambulatorial , Sistemas Computacionais , Transtorno Depressivo Maior , Autoavaliação Diagnóstica , Monitorização Fisiológica/métodos , Adulto , Atitude Frente aos Computadores , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Feminino , Humanos , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Alta do Paciente , Pacientes Desistentes do Tratamento , Satisfação do Paciente , Qualidade de Vida , Sono/fisiologia , Inquéritos e Questionários
15.
J Chem Phys ; 145(22): 224704, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984885

RESUMO

SmCoO3 is a perovskite material that has gained attention as a potential substitute for La1-xSrxMnO3-d as a solid oxide fuel cell cathode. However, a number of properties have remained unknown due to the complexity of the material. For example, we know from experimental evidence that this perovskite exists in two different crystal structures, cubic and orthorhombic, and that the cobalt ion changes its spin state at high temperatures, leading to a semiconductor-to-metal transition. However, little is known about the precise magnetic structure that causes the metallic behavior or the spin state of the Co centers at high temperature. Here, we therefore present a systematic DFT+U study of the magnetic properties of SmCoO3 in order to determine what magnetic ordering is the one exhibited by the metallic phase at different temperatures. Similarly, mechanical properties are difficult to measure experimentally, which is why there is a lack of data for the two different phases of SmCoO3. Taking advantage of our DFT calculations, we have determined the mechanical properties from our calculated elastic constants, finding that both polymorphs exhibit similar ductility and brittleness, but that the cubic structure is harder than the orthorhombic phase.

17.
J Chem Phys ; 145(1): 014703, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27394117

RESUMO

Doped LaMnO3 and SmCoO3 are important solid oxide fuel cell cathode materials. The main difference between these two perovskites is that SmCoO3 has proven to be a more efficient cathode material than LaMnO3 at lower temperatures. In order to explain the difference in efficiency, we need to gain insight into the materials' properties at the atomic level. However, while LaMnO3 has been widely studied, ab initio studies on SmCoO3 are rare. Hence, in this paper, we perform a comparative DFT + U study of the structural, electronic, and magnetic properties of these two perovskites. To that end, we first determined a suitable Hubbard parameter for the Co d-electrons to obtain a proper description of SmCoO3 that fully agrees with the available experimental data. We next evaluated the impact of oxygen and cation vacancies on the geometry, electronic, and magnetic properties. Oxygen vacancies strongly alter the electronic and magnetic structures of SmCoO3, but barely affect LaMnO3. However, due to their high formation energy, their concentrations in the material are very low and need to be induced by doping. Studying the cation vacancy concentration showed that the formation of cation vacancies is less energetically favorable than oxygen vacancies and would thus not markedly influence the performance of the cathode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...