Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1352947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487253

RESUMO

The leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC) is characterized by infantile-onset macrocephaly and chronic edema of the brain white matter. With delayed onset, patients typically experience motor problems, epilepsy and slow cognitive decline. No treatment is available. Classic MLC is caused by bi-allelic recessive pathogenic variants in MLC1 or GLIALCAM (also called HEPACAM). Heterozygous dominant pathogenic variants in GLIALCAM lead to remitting MLC, where patients show a similar phenotype in early life, followed by normalization of white matter edema and no clinical regression. Rare patients with heterozygous dominant variants in GPRC5B and classic MLC were recently described. In addition, two siblings with bi-allelic recessive variants in AQP4 and remitting MLC have been identified. The last systematic overview of variants linked to MLC dates back to 2006. We provide an updated overview of published and novel variants. We report on genetic variants from 508 patients with MLC as confirmed by MRI diagnosis (258 from our database and 250 extracted from 64 published reports). We describe 151 unique MLC1 variants, 29 GLIALCAM variants, 2 GPRC5B variants and 1 AQP4 variant observed in these MLC patients. We include experiments confirming pathogenicity for some variants, discuss particularly notable variants, and provide an overview of recent scientific and clinical insight in the pathophysiology of MLC.

2.
Sci Rep ; 13(1): 15987, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749116

RESUMO

RNAs that are able to prevent degradation by the 5'-3' exoribonuclease Xrn1 have emerged as crucial structures during infection by an increasing number of RNA viruses. Several plant viruses employ the so-called coremin motif, an Xrn1-resistant RNA that is usually located in 3' untranslated regions. Investigation of its structural and sequence requirements has led to its identification in plant virus families beyond those in which the coremin motif was initially discovered. In this study, we identified coremin-like motifs that deviate from the original in the number of nucleotides present in the loop region of the 5' proximal hairpin. They are present in a number of viral families that previously did not have an Xrn1-resistant RNA identified yet, including the double-stranded RNA virus families Hypoviridae and Chrysoviridae. Through systematic mutational analysis, we demonstrated that a coremin motif carrying a 6-nucleotide loop in the 5' proximal hairpin generally requires a YGNNAD consensus for stalling Xrn1, similar to the previously determined YGAD consensus required for Xrn1 resistance of the original coremin motif. Furthermore, we determined the minimal requirements for the 3' proximal hairpin. Since some putative coremin motifs were found in intergenic regions or coding sequences, we demonstrated their capacity for inhibiting translation through an in vitro ribosomal scanning inhibition assay. Consequently, this study provides a further expansion on the number of viral families with known Xrn1-resistant elements, while adding a novel, potentially regulatory function for this structure.


Assuntos
Vírus de Plantas , RNA Viral , Motivos de Nucleotídeos/genética , RNA Viral/metabolismo , Exorribonucleases/metabolismo , Viroma , Ribossomos/metabolismo , Nucleotídeos , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Conformação de Ácido Nucleico , Estabilidade de RNA
3.
RNA Biol ; 20(1): 409-418, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37400999

RESUMO

Xrn1-resistant RNA structures are multifunctional elements employed by an increasing number of RNA viruses. One of such elements is the coremin motif, discovered in plant virus RNAs, of which the structure has been hypothesized to form a yet unelucidated pseudoknot. Recently, the coremin motif was shown to be capable of stalling not only Xrn1, but scanning ribosomes as well. Following that observation, in this study we demonstrate that the coremin motif can promote -1 ribosomal frameshifting, similar to better-characterized viral frameshifting pseudoknots. Since this function was lost in concert with substitutions that were known to disturb Xrn1-resistance, we developed a frameshifting screen for finding novel Xrn1-resistant RNAs by randomizing parts of the coremin motif. This yielded new insights into the coremin motif structure, as Xrn1-resistant variations were identified that more clearly indicate a pseudoknot interaction. In addition, we show that the Xrn1-resistant RNA of Zika virus promotes frameshifting as well, while known -1 programmed ribosomal frameshifting pseudoknots do not stall Xrn1, suggesting that promoting frameshifting is a universal characteristic of Xrn1-resistant RNAs, but that Xrn1-resistance requires more than just a frameshifting pseudoknot.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , RNA Viral/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico , Mudança da Fase de Leitura do Gene Ribossômico , Ribossomos/metabolismo , Zika virus/genética , Infecção por Zika virus/genética
4.
Sci Rep ; 12(1): 11532, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798958

RESUMO

Pepino mosaic virus (PepMV) is a potexvirus of the family Alphaflexiviridae within the order of Tymovirales that threatens tomato production worldwide. PepMV possesses a positive-strand RNA genome with a 5'-methylguanosine cap and a 3'-polyA tail. Previously, using partially-purified viral RNA polymerase important secondary structures within the 3'-untranslated region (UTR) of PepMV RNA were identified. Here we show that an RNA pseudoknot can be formed in the 3'-UTR that includes part of the polyA tail. Using protoplasts, we demonstrate that the pseudoknot is required for replication of PepMV RNA. Mutational analysis and native gel electrophoresis further show that the pseudoknot is stabilized by UAU base triples, as is the human telomerase RNA pseudoknot. The presence of a pseudoknot in several other members of the Alpha- and Betaflexiviridae is supported by covariance analysis and native gel electrophoresis of other potexvirus, capillovirus and trichovirus RNAs. The ubiquitous presence of the pseudoknot in viruses of the Betaflexiviridae, suggests that the pseudoknot is a typical trait of the Betaflexiviridae that may have been adopted by many potexviruses during evolution.


Assuntos
Potexvirus , Solanum lycopersicum , Replicação Viral , Regiões 3' não Traduzidas/genética , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Potexvirus/genética , Potexvirus/fisiologia , RNA Viral/química
5.
RNA ; 28(10): 1348-1358, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35906005

RESUMO

Alphaviruses, such as the Sindbis virus and the Chikungunya virus, are RNA viruses with a positive sense single-stranded RNA genome that infect various vertebrates, including humans. A conserved sequence element (CSE) of ∼19 nt in the 3' noncoding region is important for replication. Despite extensive mutational analysis of the CSE, no comprehensive model of this element exists to date. Here, it is shown that the CSE can form an RNA pseudoknot with part of the poly(A) tail and is similar to the human telomerase pseudoknot with which it shares 17 nt. Mutants that alter the stability of the pseudoknot were investigated in the context of a replicon of the Sindbis virus and by native gel electrophoresis. These studies reveal that the pseudoknot is required for virus replication and is stabilized by UAU base triples. The new model is discussed in relation to previous data on Sindbis virus mutants and revertants lacking (part of) the CSE.


Assuntos
Telomerase , Animais , Humanos , RNA , RNA Mensageiro , RNA Viral/genética , Sindbis virus/genética , Replicação Viral/genética
6.
Virus Evol ; 7(1): veab021, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34141447

RESUMO

In many single-stranded (ss) RNA viruses, the cis-acting packaging signal that confers selectivity genome packaging usually encompasses short structured RNA repeats. These structural units, termed repetitive structural motifs (RSMs), potentially mediate capsid assembly by specific RNA-protein interactions. However, general knowledge of the conservation and/or the diversity of RSMs in the positive-sense ssRNA coronaviruses (CoVs) is limited. By performing structural phylogenetic analysis, we identified a variety of RSMs in nearly all CoV genomic RNAs, which are exclusively located in the 5'-untranslated regions (UTRs) and/or in the inter-domain regions of poly-protein 1ab coding sequences in a lineage-specific manner. In all alpha- and beta-CoVs, except for Embecovirus spp, two to four copies of 5'-gUUYCGUc-3' RSMs displaying conserved hexa-loop sequences were generally identified in Stem-loop 5 (SL5) located in the 5'-UTRs of genomic RNAs. In Embecovirus spp., however, two to eight copies of 5'-agc-3'/guAAu RSMs were found in the coding regions of non-structural protein (NSP) 3 and/or NSP15 in open reading frame (ORF) 1ab. In gamma- and delta-CoVs, other types of RSMs were found in several clustered structural elements in 5'-UTRs and/or ORF1ab. The identification of RSM-encompassing structural elements in all CoVs suggests that these RNA elements play fundamental roles in the life cycle of CoVs. In the recently emerged SARS-CoV-2, beta-CoV-specific RSMs are also found in its SL5, displaying two copies of 5'-gUUUCGUc-3' motifs. However, multiple sequence alignment reveals that the majority of SARS-CoV-2 possesses a variant RSM harboring SL5b C241U, and intriguingly, several variations in the coding sequences of viral proteins, such as Nsp12 P323L, S protein D614G, and N protein R203K-G204R, are concurrently found with such variant RSM. In conclusion, the comprehensive exploration for RSMs reveals phylogenetic insights into the RNA structural elements in CoVs as a whole and provides a new perspective on variations currently found in SARS-CoV-2.

7.
RNA Biol ; 18(12): 2321-2329, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33858294

RESUMO

After infection by flaviviruses like Zika and West Nile virus, eukaryotic hosts employ the well-conserved endoribonuclease Xrn1 to degrade the viral genomic RNA. Within the 3' untranslated regions, this enzyme encounters intricate Xrn1-resistant structures. This results in the accumulation of subgenomic flaviviral RNAs, an event that improves viral growth and aggravates viral pathogenicity. Xrn1-resistant RNAs have been established throughout the flaviviral genus, but not yet throughout the entire Flaviviridae family. In this work, we use previously determined characteristics of these structures to identify homologous sequences in many members of the genera pegivirus, hepacivirus and pestivirus. We used structural alignment and mutational analyses to establish that these sequences indeed represent Xrn1-resistant RNA and that they employ the general features of the flaviviral xrRNAs, consisting of a double pseudoknot formed by five base-paired regions stitched together by a crucial triple base interaction. Furthermore, we demonstrate that the pestivirus Bungowannah virus produces subgenomic RNA in vivo. Altogether, these results indicate that viruses make use of a universal Xrn1-resistant RNA throughout the Flaviviridae family.


Assuntos
Regiões 3' não Traduzidas/genética , Exorribonucleases/genética , Infecções por Flaviviridae/genética , Flaviviridae/genética , Motivos de Nucleotídeos , RNA Viral/genética , Animais , Exorribonucleases/metabolismo , Flaviviridae/classificação , Infecções por Flaviviridae/metabolismo , Infecções por Flaviviridae/virologia , Genoma Viral , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Viral/química , Suínos
8.
ACS Appl Mater Interfaces ; 13(10): 11621-11630, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33656313

RESUMO

Magnetic-activated cell sorting (MACS) is an affinity-based technique used to separate cells according to the presence of specific markers. Current MACS systems generally require an antigen to be expressed at the cell surface; these antigen-presenting cells subsequently interact with antibody-labeled magnetic particles, facilitating separation. Here, we present an alternative MACS method based on coiled-coil peptide interactions. We demonstrate that HeLa, CHO, and NIH3T3 cells can either incorporate a lipid-modified coiled-coil-forming peptide into their membrane, or that the cells can be transfected with a plasmid containing a gene encoding a coiled-coil-forming peptide. Iron oxide particles are functionalized with the complementary peptide and, upon incubation with the cells, labeled cells are facilely separated from nonlabeled populations. In addition, the resulting cells and particles can be treated with trypsin to facilitate detachment of the cells from the particles. Therefore, our new MACS method promotes efficient cell sorting of different cell lines, without the need for antigen presentation, and enables simple detachment of the magnetic particles from cells after the sorting process. Such a system can be applied to rapidly developing, sensitive research areas, such as the separation of genetically modified cells from their unmodified counterparts.


Assuntos
Separação Celular/métodos , Peptídeos/química , Animais , Células CHO , Cricetulus , Células HeLa , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Camundongos , Células NIH 3T3 , Coloração e Rotulagem/métodos
9.
Bioinformatics ; 37(7): 956-962, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-32866223

RESUMO

MOTIVATION: The Flavivirus genus includes several important pathogens, such as Zika, dengue and yellow fever virus. Flavivirus RNA genomes contain a number of functionally important structures in their 3' untranslated regions (3'UTRs). Due to the diversity of sequences and topologies of these structures, their identification is often difficult. In contrast, predictions of such structures are important for understanding of flavivirus replication cycles and development of antiviral strategies. RESULTS: We have developed an algorithm for structured pattern search in RNA sequences, including secondary structures, pseudoknots and triple base interactions. Using the data on known conserved flavivirus 3'UTR structures, we constructed structural descriptors which covered the diversity of patterns in these motifs. The descriptors and the search algorithm were used for the construction of a database of flavivirus 3'UTR structures. Validating this approach, we identified a number of domains matching a general pattern of exoribonuclease Xrn1-resistant RNAs in the growing group of insect-specific flaviviruses. AVAILABILITY AND IMPLEMENTATION: The Leiden Flavivirus RNA Structure Database is available at https://rna.liacs.nl. The search algorithm is available at https://github.com/LeidenRNA/SRHS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Ácidos Nucleicos , Flavivirus , RNA Viral/química , Regiões 3' não Traduzidas , Algoritmos , Flavivirus/genética , Conformação de Ácido Nucleico
10.
Virus Evol ; 5(2): vez034, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31456885

RESUMO

The acquisition of a multibasic cleavage site (MBCS) in the hemagglutinin (HA) glycoprotein is the main determinant of the conversion of low pathogenic avian influenza viruses into highly pathogenic strains, facilitating HA cleavage and virus replication in a broader range of host cells. In nature, substitutions or insertions in HA RNA genomic segments that code for multiple basic amino acids have been observed only in the HA genes of two out of sixteen subtypes circulating in birds, H5 and H7. Given the compatibility of MBCS motifs with HA proteins of numerous subtypes, this selectivity was hypothesized to be determined by the existence of specific motifs in HA RNA, in particular structured domains. In H5 and H7 HA RNAs, predictions of such domains have yielded alternative conserved stem-loop structures with the cleavage site codons in the hairpin loops. Here, potential RNA secondary structures were analyzed in the cleavage site regions of HA segments of influenza viruses of different types and subtypes. H5- and H7-like stem-loop structures were found in all known influenza A virus subtypes and in influenza B and C viruses with homology modeling. Nucleotide covariations supported this conservation to be determined by RNA structural constraints that are stronger in the domain-closing bottom stems as compared to apical parts. The structured character of this region in (sub-)types other than H5 and H7 indicates its functional importance beyond the ability to evolve toward an MBCS responsible for a highly pathogenic phenotype.

11.
Gene ; 710: 399-405, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31200088

RESUMO

Iron-responsive elements (IREs) are ~35-nucleotide (nt) stem-loop RNA structures located in 5' or 3' untranslated regions (UTRs) of mRNAs that mediate post-transcriptional regulation by their association with IRE-binding proteins (IRPs). IREs are characterized by their apical 6-nt loop motif 5'-CAGWGH-3' (W = A or U and H = A, C or U), the so-called pseudotriloop, of which the loop nts C1 and G5 are paired, and the none-paired C between the two stem regions. In this study, the yeast three-hybrid (Y3H) system was used to investigate the relevance of the pseudotriloop structure of ferritin light chain (FTL) for the IRE-IRP interaction and the binding affinities between variant IRE(-like) structures and the two IRP isoforms, IRP1 and 2. Destabilization of the pseudotriloop structure by a G5-to-A mutation reduced binding of IRP1 and 2, while restoring the pseudotriloop conformation by the compensatory C1-to-U mutation, restored binding to both IRPs. In particular, IRP1 showed even stronger binding to the C1U-G5A mutant than to the wildtype FTL IRE. On the other hand, deletion of the bulged-out U6 of the pseudotriloop did not significantly affect its binding to either IRP1 or 2, but substitution with C particularly enhanced the binding to IRP1. In comparison to FTL IRE, IRE-like structures of 5'-aminolevulinate synthase 2 (ALAS2) and SLC40A1 (also known as ferroportin-1) showed similar or, in the case of endothelial PAS domain protein 1 (EPAS1) IRE, slightly weaker binding affinity to IRPs. SLC11A2 (a.k.a. divalent metal transporter-1) IRE exhibited relatively weak binding to IRP1 and medium binding to IRP2. Notably, the IRE-like structure of α-synuclein showed no detectable binding to either IRP under the conditions used in this Y3H assay. Our results indicate that Y3H can be used to characterize binding between IRPs and various IRE-like structures in vivo.


Assuntos
Apoferritinas/química , Apoferritinas/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , 5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Animais , Apoferritinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteína 1 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/genética , Mutação , Conformação de Ácido Nucleico , Técnicas do Sistema de Duplo-Híbrido , Regiões não Traduzidas
12.
RNA Biol ; 16(6): 838-845, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951405

RESUMO

Xrn1 is a major 5'-3' exoribonuclease involved in the RNA metabolism of many eukaryotic species. RNA viruses have evolved ways to thwart Xrn1 in order to produce subgenomic non-coding RNA that affects the hosts RNA metabolism. The 3' untranslated region of several beny- and cucumovirus RNAs harbors a so-called 'coremin' motif that is required for Xrn1 stalling. The structural features of this motif have not been studied in detail yet. Here, by using in vitro Xrn1 degradation assays, we tested over 50 different RNA constructs based on the Beet necrotic yellow vein virus sequence to deduce putative structural features responsible for Xrn1 stalling. We demonstrated that the minimal benyvirus stalling site consists of two hairpins of 3 and 4 base pairs respectively. The 5' proximal hairpin requires a YGAD (Y = U/C, D = G/A/U) consensus loop sequence, whereas the 3' proximal hairpin loop sequence is variable. The sequence of the 10-nucleotide spacer that separates the hairpins is highly conserved and potentially involved in tertiary interactions. Similar coremin motifs were identified in plant virus isolates from other families including Betaflexiviridae, Virgaviridae, Potyviridae and Secoviridae (order of the Picornavirales). We conclude that Xrn1-stalling motifs are more widespread among RNA viruses than previously realized.


Assuntos
Exorribonucleases/metabolismo , Vírus de Plantas/genética , RNA Viral/química , Regiões 3' não Traduzidas , Sequência de Bases , Sequência Conservada , Mutação , Motivos de Nucleotídeos , Nucleotídeos/química , Filogenia , RNA Viral/metabolismo
13.
Chem Sci ; 9(36): 7271-7276, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30288248

RESUMO

Nanoscale engineering of surfaces is becoming an indispensable technique to modify membranes and, thus cellular behaviour. Here, such membrane engineering related was explored on the surface of a living animal using DNA nanotechnology. We demonstrate the immobilization of oligonucleotides functionalized with a membrane anchor on 2 day old zebrafish. The protruding single-stranded DNA on the skin of zebrafish served as a handle for complementary DNAs, which allowed the attachment of small molecule cargo, liposomes and dynamic relabeling by DNA hybridization protocols. Robust anchoring of the oligonucleotides was proven as DNA-based amplification processes were successfully performed on the outer membrane of the zebrafish enabling the multiplication of surface functionalities from a single DNA-anchoring unit and the dramatic improvement of fluorescent labeling of these animals. As zebrafish are becoming an alternative to animal models in drug development, toxicology and nanoparticles characterization, we believe the platform presented here allows amalgamation of DNA nanotechnology tools with live animals and this opens up yet unexplored avenues like efficient bio-barcoding as well as in vivo tracking.

14.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29372574

RESUMO

High-fidelity analysis of translocating biomolecules through nanopores demands shortening the nanocapillary length to a minimal value. Existing nanopores and capillaries, however, inherit a finite length from the parent membranes. Here, nanocapillaries of zero depth are formed by dissolving two superimposed and crossing metallic nanorods, molded in polymeric slabs. In an electrolyte, the interface shared by the crossing fluidic channels is mathematically of zero thickness and defines the narrowest constriction in the stream of ions through the nanopore device. This novel architecture provides the possibility to design nanopore fluidic channels, particularly with a robust 3D architecture maintaining the ultimate zero thickness geometry independently of the thickness of the fluidic channels. With orders of magnitude reduced biomolecule translocation speed, and lowered electronic and ionic noise compared to nanopores in 2D materials, the findings establish interfacial nanopores as a scalable platform for realizing nanofluidic systems, capable of single-molecule detection.

15.
Nat Commun ; 9(1): 119, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317714

RESUMO

Flaviviruses such as Yellow fever, Dengue, West Nile, and Zika generate disease-linked viral noncoding RNAs called subgenomic flavivirus RNAs. Subgenomic flavivirus RNAs result when the 5'-3' progression of cellular exoribonuclease Xrn1 is blocked by RNA elements called Xrn1-resistant RNAs located within the viral genome's 3'-untranslated region that operate without protein co-factors. Here, we show that Xrn1-resistant RNAs can halt diverse exoribonucleases, revealing a mechanism in which they act as general mechanical blocks that 'brace' against an enzyme's surface, presenting an unfolding problem that confounds further enzyme progression. Further, we directly demonstrate that Xrn1-resistant RNAs exist in a diverse set of flaviviruses, including some specific to insects or with no known arthropod vector. These Xrn1-resistant RNAs comprise two secondary structural classes that mirror previously reported phylogenic analysis. Our discoveries have implications for the evolution of exoribonuclease resistance, the use of Xrn1-resistant RNAs in synthetic biology, and the development of new therapies.


Assuntos
Exorribonucleases/metabolismo , Flavivirus/genética , Estabilidade de RNA/genética , RNA não Traduzido/genética , RNA Viral/genética , Linhagem Celular , Genoma Viral/genética , Humanos , Conformação de Ácido Nucleico , Desdobramento de Proteína
16.
Adv Healthc Mater ; 6(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28945015

RESUMO

Protein delivery into the cytosol of cells is a challenging topic in the field of nanomedicine, because cellular uptake and endosomal escape are typically inefficient, hampering clinical applications. In this contribution cuboidal mesoporous silica nanoparticles (MSNs) containing disk-shaped cavities with a large pore diameter (10 nm) are studied as a protein delivery vehicle using cytochrome-c (cytC) as a model membrane-impermeable protein. To ensure colloidal stability, the MSNs are coated with a fusogenic lipid bilayer (LB) and cellular uptake is induced by a complementary pair of coiled-coil (CC) lipopeptides. Coiled-coil induced membrane fusion leads to the efficient cytosolic delivery of cytC and triggers apoptosis of cells. Delivery of these LB coated MSNs in the presence of various endocytosis inhibitors strongly suggests that membrane fusion is the dominant mechanism of cellular uptake. This method is potentially a universal way for the efficient delivery of any type of inorganic nanoparticle or protein into cells mediated by CC induced membrane fusion.


Assuntos
Materiais Revestidos Biocompatíveis/química , Bicamadas Lipídicas/química , Nanopartículas/química , Dióxido de Silício/química , Apoptose/efeitos dos fármacos , Citocromos c/química , Citocromos c/metabolismo , Citocromos c/toxicidade , Citosol/metabolismo , Endocitose , Células HeLa , Humanos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Fusão de Membrana , Microscopia Confocal , Tamanho da Partícula , Porosidade
17.
Sci Rep ; 6: 39549, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000744

RESUMO

Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single-molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor-groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The -1 frameshifting efficiency is positively correlated with the cooperative one-step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between -1 frameshifting efficiency and unfolding rate at forces of 15-35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. No correlation was observed between thermal stability and -1 frameshifting efficiency.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Produtos do Gene gag/química , RNA Viral/genética , Retrovirus dos Símios , Ribossomos/química , Eletroforese em Gel de Poliacrilamida , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Pinças Ópticas , Desnaturação Proteica , Dobramento de Proteína , RNA Helicases/química , RNA Mensageiro/metabolismo , Termodinâmica
18.
Sci Rep ; 6: 38892, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966593

RESUMO

The influenza A virus genome consists of eight RNA segments. RNA structures within these segments and complementary (cRNA) and protein-coding mRNAs may play a role in virus replication. Here, conserved putative secondary structures that impose significant evolutionary constraints on the gene segment encoding the surface glycoprotein hemagglutinin (HA) were investigated using available sequence data on tens of thousands of virus strains. Structural constraints were identified by analysis of covariations of nucleotides suggested to be paired by structure prediction algorithms. The significance of covariations was estimated by mutual information calculations and tracing multiple covariation events during virus evolution. Covariation patterns demonstrated that structured domains in HA RNAs were mostly subtype-specific, whereas some structures were conserved in several subtypes. The influence of RNA folding on virus replication was studied by plaque assays of mutant viruses with disrupted structures. The results suggest that over the whole length of the HA segment there are local structured domains which contribute to the virus fitness but individually are not essential for the virus. Existence of subtype-specific structured regions in the segments of the influenza A virus genome is apparently an important factor in virus evolution and reassortment of its genes.


Assuntos
Evolução Molecular , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética
19.
ACS Cent Sci ; 2(9): 621-630, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27725960

RESUMO

Efficient delivery of drugs to living cells is still a major challenge. Currently, most methods rely on the endocytotic pathway resulting in low delivery efficiency due to limited endosomal escape and/or degradation in lysosomes. Here, we report a new method for direct drug delivery into the cytosol of live cells in vitro and invivo utilizing targeted membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane. This method thus allows for the quick and efficient delivery of drugs and is expected to have many invitro, ex vivo, and invivo applications.

20.
ACS Nano ; 10(8): 7428-35, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27504667

RESUMO

The complementary coiled coil forming peptides E4 [(EIAALEK)4] and K4 [(KIAALKE)4] are known to trigger liposomal membrane fusion when tethered to lipid vesicles in the form of lipopeptides. In this study, we examined whether these coiled coil forming peptides can be used for drug delivery applications. First, we prepared E4 peptide modified liposomes containing the far-red fluorescent dye TO-PRO-3 iodide (E4-Lipo-TP3) and confirmed that E4-liposomes could deliver TP3 into HeLa cells expressing K4 peptide on the membrane (HeLa-K) under cell culture conditions in a selective manner. Next, we prepared doxorubicin-containing E4-liposomes (E4-Lipo-DOX) and confirmed that E4-liposomes could also deliver DOX into HeLa-K cells. Moreover, E4-Lipo-DOX showed enhanced cytotoxicity toward HeLa-K cells compared to free doxorubicin. To prove the suitability of E4/K4 coiled coil formation for in vivo drug delivery, we injected E4-Lipo-TP3 or E4-Lipo-DOX into zebrafish xenografts of HeLa-K. As a result, E4-liposomes delivered TP3 to the implanted HeLa-K cells, and E4-Lipo-DOX could suppress cancer proliferation in the xenograft when compared to nontargeted conditions (i.e., zebrafish xenograft with free DOX injection). These data demonstrate that coiled coil formation enables drug selectivity and efficacy in vivo. It is envisaged that these findings are a step forward toward biorthogonal targeting systems as a tool for clinical drug delivery.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Xenoenxertos , Lipossomos , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Peptídeos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...