Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37916590

RESUMO

The role of ambient oxygen gas (O2) on molecular and nanoparticle formation and agglomeration was studied in laser ablation plumes. As a lab-scale surrogate to a high explosion detonation event, nanosecond laser ablation of an aluminum alloy (AA6061) target was performed in atmospheric pressure conditions. Optical emission spectroscopy and two mass spectrometry techniques were used to monitor the early to late stages of plasma generation to track the evolution of atoms, molecules, clusters, nanoparticles, and agglomerates. The experiments were performed under atmospheric pressure air, atmospheric pressure nitrogen, and 20% and 5% O2 (balance N2), the latter specifically with in situ mass spectrometry. Electron microscopy was performed ex situ to identify crystal structure and elemental distributions in individual nanoparticles. We find that the presence of ≈20% O2 leads to strong AlO emission, whereas in a flowing N2 environment (with trace O2), AlN and strong, unreacted Al emissions are present. In situ mass spectrometry reveals that as O2 availability increases, Al oxide cluster size increases. Nanoparticle agglomerates formed in air are found to be larger than those formed under N2 gas. High-resolution transmission electron microscopy demonstrates that Al2O3 and AlN nanoparticle agglomerates are formed in both environments; indicating that the presence of trace O2 can lead to Al2O3 nanoparticle formation. The present results highlight that the availability of O2 in the ambient gas significantly impacts spectral signatures, cluster size, and nanoparticle agglomeration behavior. These results are relevant to understanding debris formation in an explosion event, and interpreting data from forensic investigations.

2.
Microsc Microanal ; 29(6): 1931-1939, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37832144

RESUMO

Precise control is an essential and elusive quality of emerging self-driving transmission electron microscopes (TEMs). It is widely understood these instruments must be capable of performing rapid, high-volume, and arbitrary movements for practical self-driving operation. However, stage movements are difficult to automate at scale, owing to mechanical instability, hysteresis, and thermal drift. Such difficulties pose major barriers to artificial intelligence-directed microscope designs that require repeatable, precise movements. To guide design of emerging instruments, it is necessary to understand the behavior of existing mechanisms to identify rate limiting steps for full autonomy. Here, we describe a general framework to evaluate stage motion in any TEM. We define metrics to evaluate stage degrees of freedom, propose solutions to improve performance, and comment on fundamental limits to automated experimentation using present hardware.

3.
5.
Nat Commun ; 14(1): 988, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813779

RESUMO

Corrosion is a ubiquitous failure mode of materials. Often, the progression of localized corrosion is accompanied by the evolution of porosity in materials previously reported to be either three-dimensional or two-dimensional. However, using new tools and analysis techniques, we have realized that a more localized form of corrosion, which we call 1D wormhole corrosion, has previously been miscategorized in some situations. Using electron tomography, we show multiple examples of this 1D and percolating morphology. To understand the origin of this mechanism in a Ni-Cr alloy corroded by molten salt, we combined energy-filtered four-dimensional scanning transmission electron microscopy and ab initio density functional theory calculations to develop a vacancy mapping method with nanometer-resolution, identifying a remarkably high vacancy concentration in the diffusion-induced grain boundary migration zone, up to 100 times the equilibrium value at the melting point. Deciphering the origins of 1D corrosion is an important step towards designing structural materials with enhanced corrosion resistance.

6.
J Hazard Mater ; 425: 127779, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34823954

RESUMO

This study investigates the impacts of Ni doping on technetium-99 (Tc) sequestration in aqueous solutions through transformation of Fe(OH)2(s) to iron spinel (magnetite) under alkaline conditions. Extensive solid characterization was performed for the mineral phases produced, as well as the Tc/Ni speciation and distribution within these phases. X-ray diffraction results show that iron spinel was the dominant mineral product without detectable Ni incorporation. The doped Ni ions mainly precipitated as fine Fe/Ni oxide/hydroxide particles, including strongly reduced nanometer-sized spheroidal Ni-rich and metallic Ni phases. High-resolution analytical scanning transmission electron microscopy using energy dispersive X-ray spectroscopy and electron energy loss spectroscopy on the produced solid samples (focused ion beam-prepared specimens) revealed three Tc distribution domains dominated by nanocrystals and, especially, a Tc-rich metallic phase. Instances of metallic Tc were specifically found in spheroidal, Ni-rich and metallic nanoparticles exhibiting a core/shell microstructure that suggests strong reduction and sequential precipitation of Ni-Tc-Ni. Mass balance analysis showed nearly 100% Tc removal from the 4.8 × 10-4 M Tc solutions. The finding of the metallic Tc encapsulation indicates that Tc sequestration through Ni-doped Fe(OH)2(s)-to-iron spinel transformation process likely provides an alternative treatment pathway for Tc removal and could be combined into further waste treatment approaches.

7.
ACS Omega ; 6(17): 11628-11638, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34056318

RESUMO

Various radionuclides are released as gases during reprocessing of used nuclear fuel or during nuclear accidents including iodine-129 (129I) and iodine-131 (131I). These isotopes are of particular concern to the environment and human health as they are environmentally mobile and can cause thyroid cancer. In this work, silver-loaded heat-treated aluminosilicate xerogels (Ag-HTX) were evaluated as sorbents for iodine [I2(g)] capture. After synthesis of the base NaAlSiO4 xerogel, a heat-treatment step was performed to help increase the mechanical integrity of the NaAlSiO4 gels (Na-HTX) prior to Ag-exchanging to create Ag-HTX xerogels. Samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, gravimetric iodine loading, nanoindentation, and dynamic mechanical analysis. The structural and chemical analyses of Ag-HTX showed uniform distribution of Ag throughout the gel network after Ag-exchange. After I2(g) capture, the AgI crystallites were observed in the sorbent, verifying chemisorption as the primary iodine capture mechanism. Iodine loading of this xerogel was 0.43 g g-1 at 150 °C over 1 day and 0.52 g g-1 at 22 °C over 33 days. The specific surface area of Ag-HTX was 202 m2 g-1 and decreased to 87 m2 g-1 after iodine loading. The hardness of the Na-HTX was >145 times higher than that of the heat-treated aerogel of the same starting composition. The heat-treatment process increased Young's modulus (compressive) value to 40.8 MPa from 7.0 MPa of as-made xerogel, demonstrating the need for this added step in the sample preparation process. These results show that Ag-HTX is a promising sorbent for I2(g) capture with good iodine loading capacity and mechanical stability.

10.
ACS Appl Mater Interfaces ; 12(35): 39781-39786, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805849

RESUMO

Our present understanding of surface dissolution of nuclear fuels such as uranium dioxide (UO2) is limited by the use of nonlocal characterization techniques. Here we discuss the use of state-of-the-art scanning transmission electron microscopy (STEM) to reveal atomic-scale changes occurring to a UO2 thin film subjected to anoxic dissolution in deionized water. No amorphization of the UO2 film surface during dissolution is observed, and dissolution occurs preferentially at surface reactive sites that present as surface pits which increase in size as the dissolution proceeds. Using a combination of STEM imaging modes, energy-dispersive X-ray spectroscopy (STEM-EDS), and electron energy loss spectroscopy (STEM-EELS), we investigate structural defects and oxygen passivation of the surface that originates from the filling of the octahedral interstitial site in the center of the unit cells and its associated lattice contraction. Taken together, our results reveal complex pathways for both the dissolution and infiltration of solutions into UO2 surfaces.

11.
ACS Appl Mater Interfaces ; 12(23): 26127-26136, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401479

RESUMO

Silver-exchanged aluminosilicate aerogels and xerogels were investigated as gaseous iodine [I2(g)] sorbents. The structures, morphologies, compositions, and porosities of aerogels (as-made and heat-treated at 350 °C) and xerogels are compared by using powder X-ray diffraction (PXRD), scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and specific surface area (SSA) as well as pore size analyses. The as-made aerogels, xerogels, and heat-treated aerogels were ion exchanged with Ag in AgNO3 solutions of deionized water and methanol (5:1 by volume), and PXRD patterns showed the presence of nanocrystalline Ag0 after the Ag exchange. Gravimetric iodine loadings of Ag-aerogels and Ag-xerogels were 0.33-0.41 g g-1. The Ag-aerogels without heat treatment showed an ∼8 mass % higher iodine loading than Ag-impregnated xerogels and ∼3 mass % higher than heat-treated Ag-impregnated aerogels. All gels after iodine uptake showed the presence of AgI, indicating chemisorption of iodine to silver. The SSA values of the as-made gels were 420-600 m2 g-1 but decreased significantly to 34-120 m2 g-1 after Ag impregnation and iodine uptake. Overall, changes in physical and chemical properties of aerogels and xerogels after iodine uptake were similar and the differences in iodine loading capacities of the aerogels and xerogels were minimal, providing a driver for using xerogels due to their less complex synthesis process as compared to aerogels.

12.
ACS Appl Mater Interfaces ; 12(17): 19682-19692, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32293858

RESUMO

In this paper, sodium aluminosilicate aerogels and xerogels were evaluated as scaffolds for a variety of different getters including Ag+, Cs+, Cu2+, Fe3+, K+, Li+, Rb+, Sb3+, Sn2+, and Sn4+ for the capture of gaseous iodine coming from nuclear facilities. The exchange capacities varied widely from a near complete exchange in the case of Ag+ to much lower exchange levels for some of the Sn compounds [i.e., colloidal SnO2, Sn(II) acetate, and Sn(IV) acetate]. Several of the additives showed great promise at allowing for high iodine loadings in the base materials including the following: AgNO3, colloidal SnO2, Sn(II) acetate, Sn(IV) acetate, Cu(NO3)2, and CuSO4. From the standpoint of iodine uptake as a function of getter loading, Sn4+ was the most promising with a getter utilization (mass of iodine divided by mass of Sn, in atomic %) of 8.4, a chemical uptake of 60.7 mass % (oxygen excluded), and an mI ms-1 (mass of iodine per mass of sorbent) value of 0.881; these are some of the highest values reported to date for inorganic iodine sorbents.

13.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 9): 1291-1296, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31523452

RESUMO

A cadmium germanium arsenide compound, Cd3Ge2As4, was synthesized using a double-containment fused quartz ampoule method within a rocking furnace and a melt-quench technique. The crystal structure was determined from single-crystal X-ray diffraction (SC-XRD), scanning and transmission electron microscopies (i.e. SEM, STEM, and TEM), and selected area diffraction (SAD) and confirmed with electron backscatter diffraction (EBSD). The chemistry was verified with electron energy loss spectroscopy (EELS).

14.
ACS Appl Mater Interfaces ; 9(38): 32907-32919, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28910079

RESUMO

In this paper, aluminosilicate aerogels were used as scaffolds for silver nanoparticles to capture I2(g). The starting materials for these scaffolds included Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles were added by soaking the aerogels in aqueous AgNO3 solutions followed by drying and Ag+ reduction under H2/Ar to form Ag0 crystallites within the aerogel matrix. In some cases, aerogels were thiolated with 3-(mercaptopropyl)trimethoxysilane as an alternative method for binding Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogels, Si was replaced with Ag. The Ag-loading of thiolated versus nonthiolated Na-Al-Si-O aerogels was comparable at ∼35 atomic %, whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ∼7 atomic % after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were >0.5 mI ms-1 (denoting the mass of iodine captured per starting mass of the sorbent) showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated and Ag0-functionalized Al-Si-O aerogel was 0.31 mI ms-1. The control of Ag uptake over solution residence time and [Ag] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the loading capacity of iodine.

15.
Nat Nanotechnol ; 11(9): 791-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27294505

RESUMO

Three water adsorption-desorption mechanisms are common in inorganic materials: chemisorption, which can lead to the modification of the first coordination sphere; simple adsorption, which is reversible; and condensation, which is irreversible. Regardless of the sorption mechanism, all known materials exhibit an isotherm in which the quantity of water adsorbed increases with an increase in relative humidity. Here, we show that carbon-based rods can adsorb water at low humidity and spontaneously expel about half of the adsorbed water when the relative humidity exceeds a 50-80% threshold. The water expulsion is reversible, and is attributed to the interfacial forces between the confined rod surfaces. At wide rod spacings, a monolayer of water can form on the surface of the carbon-based rods, which subsequently leads to condensation in the confined space between adjacent rods. As the relative humidity increases, adjacent rods (confining surfaces) in the bundles are drawn closer together via capillary forces. At high relative humidity, and once the size of the confining surfaces has decreased to a critical length, a surface-induced evaporation phenomenon known as solvent cavitation occurs and water that had condensed inside the confined area is released as a vapour.

16.
Chem Commun (Camb) ; 52(16): 3300-3, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26815841

RESUMO

We report the in situ atomic-scale visualization of the dynamic three-dimensional growth of NiO during the initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy. A step-by-step adatom growth mechanism in 3D is observed and a change in the surface planes of growing oxide islands can be induced by local surface kinetic variations.

17.
ACS Appl Mater Interfaces ; 7(39): 21712-6, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26333118

RESUMO

Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

18.
ACS Appl Mater Interfaces ; 7(31): 17272-7, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26186484

RESUMO

Vacancy injection and selective oxidation of one species in bimetallic alloy at high temperature is a well-known phenomenon. However, detailed understanding of the behavior of the injected vacancies and consequently their effect on oxidation remains elusive. The current research examines the oxidation of high-purity Ni doped with 4.1 at. % Al using in situ transmission electron microscopy (TEM). Experiments are performed on nanoposts fabricated from solution-annealed bulk material that are essentially single crystal samples. Initial oxidation is observed to occur by multisite oxide nucleation, formation of an oxide shell followed by cavity nucleation and growth at the metal/oxide interface. One of the most interesting in situ TEM observations is the formation of a cavity that leads to the faceting of the metal and subsequent oxidation occurring by an atomic ledge migration mechanism on the faceted metal surface. Further, it is directly observed that metal atoms diffuse through the oxide layer to combine with oxygen at the outer surface of the oxide. The present work indicates that injection of vacancies and formation of cavity will lead to a situation where the oxidation rate is essentially controlled by the low surface energy plane of the metal, rather than by the initial terminating plane at the metal surface exposed to the oxidizing environment.

19.
ACS Nano ; 7(9): 7689-97, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23915202

RESUMO

The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ CVD calibrations. The morphology of the Ge-Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures.

20.
Environ Sci Technol ; 47(13): 7540-7, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23763706

RESUMO

The efficient capture of radionuclides with long half-lives such as technetium-99 ((99)Tc), uranium-238 ((238)U), and iodine-129 ((129)I) is pivotal to prevent their transport into groundwater and/or release into the atmosphere. While different sorbents have been considered for capturing each of them, in the current work, nanostructured chalcogen-based aerogels called chalcogels are shown to be very effective at capturing ionic forms of (99)Tc and (238)U, as well as nonradioactive gaseous iodine (i.e., a surrogate for (129)I2), irrespective of the sorbent polarity. The chalcogel chemistries studied were Co0.7Bi0.3MoS4, Co0.7Cr0.3MoS4, Co0.5Ni0.5MoS4, PtGe2S5, and Sn2S3. The PtGe2S5 sorbent performed the best overall with capture efficiencies of 98.0% and 99.4% for (99)Tc and (238)U, respectively, and >99.0% for I2(g) over the duration of the experiment. The capture efficiencies for (99)Tc and (238)U varied between the different sorbents, ranging from 57.3-98.0% and 68.1-99.4%, respectively. All chalcogels showed >99.0% capture efficiency for iodine over the test duration. This versatile nature of chalcogels can provide an attractive option for the environmental remediation of the radionuclides associated with legacy wastes from nuclear weapons production as well as wastes generated during nuclear power production or nuclear fuel reprocessing.


Assuntos
Iodo/química , Poluentes Radioativos/química , Pertecnetato Tc 99m de Sódio/química , Sulfetos/química , Compostos de Urânio/química , Calcogênios/química , Recuperação e Remediação Ambiental , Géis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...