Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786129

RESUMO

The ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella Pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) is a group of bacteria very difficult to treat due to their high ability to acquire resistance to antibiotics and are the main cause of nosocomial infections worldwide, posing a threat to global public health. Nosocomial infections with MDR bacteria are found mainly in Intensive Care Units, due to the multitude of maneuvers and invasive medical devices used, the prolonged antibiotic treatments, the serious general condition of these critical patients, and the prolonged duration of hospitalization. MATERIALS AND METHODS: During a period of one year, from January 2023 to December 2023, this cross-sectional study was conducted on patients diagnosed with sepsis admitted to the Intensive Care Unit of the Sibiu County Emergency Clinical Hospital. Samples taken were tracheal aspirate, catheter tip, pharyngeal exudate, wound secretion, urine culture, blood culture, and peritoneal fluid. RESULTS: The most common bacteria isolated from patients admitted to our Intensive Care Unit was Klebsiella pneumoniae, followed by Acinetobacter baumanii and Pseudomonas aeruginosa. Gram-positive cocci (Enterococcus faecium and Staphilococcus aureus) were rarely isolated. Most of the bacteria isolated were MDR bacteria. CONCLUSIONS: The rise of antibiotic and antimicrobial resistance among strains in the nosocomial environment and especially in Intensive Care Units raises serious concerns about limited treatment options.

2.
Microorganisms ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674628

RESUMO

The worldwide increase of multidrug-resistant Gram-negative bacteria is a global threat. The emergence and global spread of Klebsiella pneumoniae carbapenemase- (KPC-) producing Klebsiella pneumoniae represent a particular concern. This pathogen has increased resistance and abilities to persist in human reservoirs, in hospital environments, on medical devices, and to generate biofilms. Mortality related to this microorganism is high among immunosuppressed oncological patients and those with multiple hospitalizations and an extended stay in intensive care. There is a severe threat posed by the ability of biofilms to grow and resist antibiotics. Various nanotechnology-based strategies have been studied and developed to prevent and combat serious health problems caused by biofilm infections. The aim of this review was to evaluate the implications of nanotechnology in eradicating biofilms with KPC-producing Klebsiella pneumoniae, one of the bacteria most frequently associated with nosocomial infections in intensive care units, including in our department, and to highlight studies presenting the potential applicability of TiO2 nanocomposite materials in hospital practice. We also described the frequency of the presence of bacterial biofilms on medical surfaces, devices, and equipment. TiO2 nanocomposite coatings are one of the best long-term options for antimicrobial efficacy due to their biocompatibility, stability, corrosion resistance, and low cost; they find their applicability in hospital practice due to their critical antimicrobial role for surfaces and orthopedic and dental implants. The International Agency for Research on Cancer has recently classified titanium dioxide nanoparticles (TiO2 NPs) as possibly carcinogenic. Currently, there is an interest in the ecological, non-toxic synthesis of TiO2 nanoparticles via biological methods. Biogenic, non-toxic nanoparticles have remarkable properties due to their biocompatibility, stability, and size. Few studies have mentioned the use of nanoparticle-coated surfaces as antibiofilm agents. A literature review was performed to identify publications related to KPC-producing Klebsiella pneumoniae biofilms and antimicrobial TiO2 photocatalytic nanocomposite coatings. There are few reviews on the antibacterial and antibiofilm applications of TiO2 photocatalytic nanocomposite coatings. TiO2 nanoparticles demonstrated marked antibiofilm activity, but being nano in size, these nanoparticles can penetrate cell membranes and may initiate cellular toxicity and genotoxicity. Biogenic TiO2 nanoparticles obtained via green, ecological technology have less applicability but are actively investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...