Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559216

RESUMO

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly. BA.2.87.1 is more resistant to neutralization by XBB.15-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines.

2.
mBio ; 15(5): e0075124, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38591890

RESUMO

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE: This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Fusão Celular , Evasão da Resposta Imune , SARS-CoV-2 , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , COVID-19/imunologia , COVID-19/virologia , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Cricetinae , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19/imunologia
3.
J Immunother Cancer ; 12(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177076

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is highly transmissible and evades pre-established immunity. Messenger RNA (mRNA) vaccination against ancestral strain spike protein can induce intact T-cell immunity against the Omicron variant, but efficacy of booster vaccination in patients with late-stage lung cancer on immune-modulating agents including anti-programmed cell death protein 1(PD-1)/programmed death-ligand 1 (PD-L1) has not yet been elucidated. METHODS: We assessed T-cell responses using a modified activation-induced marker assay, coupled with high-dimension flow cytometry analyses. Peripheral blood mononuclear cells (PBMCs) were stimulated with various viral peptides and antigen-specific T-cell responses were evaluated using flow cytometry. RESULTS: Booster vaccines induced CD8+ T-cell response against the ancestral SARS-CoV-2 strain and Omicron variant in both non-cancer subjects and patients with lung cancer, but only a marginal induction was detected for CD4+ T cells. Importantly, antigen-specific T cells from patients with lung cancer showed distinct subpopulation dynamics with varying degrees of differentiation compared with non-cancer subjects, with evidence of dysfunction. Notably, female-biased T-cell responses were observed. CONCLUSION: We conclude that patients with lung cancer on immunotherapy show a substantial qualitative deviation from non-cancer subjects in their T-cell response to mRNA vaccines, highlighting the need for heightened protective measures for patients with cancer to minimize the risk of breakthrough infection with the Omicron and other future variants.


Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , Feminino , Vacinas de mRNA , Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2 , Leucócitos Mononucleares , COVID-19/prevenção & controle
4.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38189780

RESUMO

The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vß segment (Trbv1) impaired loop extrusion originating locally and extending to DßJß CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DßJß-bound RAG as the sole mechanism of Vß recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vß and DßJß segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.


Assuntos
Cromatina , Receptores de Antígenos , Cromatina/genética , Endonucleases , Mutação , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
5.
Cell ; 187(3): 585-595.e6, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194968

RESUMO

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and XBB-derived variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose-vaccinated and bivalent-vaccinated healthcare workers, XBB.1.5-wave-infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially different conformational stability of BA.2.86 spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia
6.
Nat Immunol ; 25(1): 77-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049581

RESUMO

Intestinal intraepithelial lymphocytes (IELs) exhibit prompt innate-like responses to microenvironmental cues and require strict control of effector functions. Here we showed that Aiolos, an Ikaros zinc-finger family member encoded by Ikzf3, acted as a regulator of IEL activation. Ikzf3-/- CD8αα+ IELs had elevated expression of NK receptors, cytotoxic enzymes, cytokines and chemokines. Single-cell RNA sequencing of Ikzf3-/- and Ikzf3+/+ IELs showed an amplified effector machinery in Ikzf3-/- CD8αα+ IELs compared to Ikzf3+/+ counterparts. Ikzf3-/- CD8αα+ IELs had increased responsiveness to interleukin-15, which explained a substantial part, but not all, of the observed phenotypes. Aiolos binding sites were close to those for the transcription factors STAT5 and RUNX, which promote interleukin-15 signaling and cytolytic programs, and Ikzf3 deficiency partially increased chromatin accessibility and histone acetylation in these regions. Ikzf3 deficiency in mice enhanced susceptibility to colitis, underscoring the relevance of Aiolos in regulating the effector function in IELs.


Assuntos
Linfócitos Intraepiteliais , Fatores de Transcrição , Animais , Camundongos , Antígenos CD8/metabolismo , Interleucina-15/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Cell Rep ; 42(10): 113193, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37777967

RESUMO

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the efficacy of vaccination efforts against coronavirus disease 2019 (COVID-19). The Omicron XBB lineage of SARS-CoV-2 has presented dramatic evasion of neutralizing antibodies stimulated by mRNA vaccination and COVID-19 convalescence. XBB.1.16, characterized by two mutations relative to the dominating variant XBB.1.5, i.e., E180V and K478R, has been on the rise globally. In this study, we compare the immune escape of XBB.1.16 with XBB.1.5, alongside ancestral variants D614G, BA.2, and BA.4/5. We demonstrate that XBB.1.16 is strongly immune evasive, with extent comparable to XBB.1.5 in bivalent-vaccinated healthcare worker sera, 3-dose-vaccinated healthcare worker sera, and BA.4/5-wave convalescent sera. Interestingly, the XBB.1.16 spike is less fusogenic than that of XBB.1.5, and this phenotype requires both E180V and K478R mutations to manifest. Overall, our findings emphasize the importance of the continued surveillance of variants and the need for updated mRNA vaccine formulations.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Formação de Anticorpos , Convalescença , Evasão da Resposta Imune , SARS-CoV-2 , Anticorpos Antivirais
8.
Emerg Microbes Infect ; 12(2): 2270069, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819267

RESUMO

Immune evasion by SARS-CoV-2 paired with immune imprinting from monovalent mRNA vaccines has resulted in attenuated neutralizing antibody responses against Omicron subvariants. In this study, we characterized two new XBB variants rising in circulation - EG.5.1 and XBB.2.3, for their neutralization and syncytia formation. We determined the neutralizing antibody titers in sera of individuals that received a bivalent mRNA vaccine booster, BA.4/5-wave infection, or XBB.1.5-wave infection. Bivalent vaccination-induced antibodies neutralized ancestral D614G efficiently, but to a much less extent, two new EG.5.1 and XBB.2.3 variants. In fact, the enhanced neutralization escape of EG.5.1 appeared to be driven by its key defining mutation XBB.1.5-F456L. Notably, infection by BA.4/5 or XBB.1.5 afforded little, if any, neutralization against EG.5.1, XBB.2.3 and previous XBB variants - especially in unvaccinated individuals, with average neutralizing antibody titers near the limit of detection. Additionally, we investigated the infectivity, fusion activity, and processing of variant spikes for EG.5.1 and XBB.2.3 in HEK293T-ACE2 and CaLu-3 cells but found no significant differences compared to earlier XBB variants. Overall, our findings highlight the continued immune evasion of new Omicron subvariants and, more importantly, the need to reformulate mRNA vaccines to include XBB spikes for better protection.


Assuntos
COVID-19 , Fusão de Membrana , Humanos , COVID-19/prevenção & controle , Células HEK293 , Evasão da Resposta Imune , SARS-CoV-2/genética , Anticorpos Neutralizantes , Vacinas de mRNA , Anticorpos Antivirais
9.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745517

RESUMO

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and the XBB-lineage variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose vaccinated and bivalent vaccinated healthcare workers, XBB.1.5-wave infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant Spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially differences conformational stability of BA.2.86 Spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.

10.
Cell Rep Med ; 4(5): 101049, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37148877

RESUMO

New Omicron subvariants continue to emerge throughout the world. In particular, the XBB subvariant, which is a recombinant virus between BA.2.10.1.1 and BA.2.75.3.1.1.1, as well as the BA.2.3.20 and BR.2 subvariants that contain mutations distinct from BA.2 and BA.2.75, are currently increasing in proportion of variants sequenced. Here we show that antibodies induced by 3-dose mRNA booster vaccination as well as BA.1- and BA.4/5-wave infection effectively neutralize BA.2, BR.2, and BA.2.3.20 but have significantly reduced efficiency against XBB. In addition, the BA.2.3.20 subvariant exhibits enhanced infectivity in the lung-derived CaLu-3 cells and in 293T-ACE2 cells. Overall, our results demonstrate that the XBB subvariant is highly neutralization resistant, which highlights the need for continued monitoring of the immune escape and tissue tropism of emerging Omicron subvariants.


Assuntos
Anticorpos , Humanos , Células HEK293 , Imunização Secundária , Mutação , RNA Mensageiro
11.
Cell Rep ; 42(5): 112443, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37104089

RESUMO

Omicron subvariants continuingly challenge current vaccination strategies. Here, we demonstrate nearly complete escape of the XBB.1.5, CH.1.1, and CA.3.1 variants from neutralizing antibodies stimulated by three doses of mRNA vaccine or by BA.4/5 wave infection, but neutralization is rescued by a BA.5-containing bivalent booster. CH.1.1 and CA.3.1 show strong immune escape from monoclonal antibody S309. Additionally, XBB.1.5, CH.1.1, and CA.3.1 spike proteins exhibit increased fusogenicity and enhanced processing compared with BA.2. Homology modeling reveals the key roles of G252V and F486P in the neutralization resistance of XBB.1.5, with F486P also enhancing receptor binding. Further, K444T/M and L452R in CH.1.1 and CA.3.1 likely drive escape from class II neutralizing antibodies, whereas R346T and G339H mutations could confer the strong neutralization resistance of these two subvariants to S309-like antibodies. Overall, our results support the need for administration of the bivalent mRNA vaccine and continued surveillance of Omicron subvariants.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Formação de Anticorpos , Mutação/genética , RNA Mensageiro/genética , Vacinas Combinadas , Anticorpos Antivirais
12.
J Immunol ; 210(7): 843-844, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947825
13.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36749632

RESUMO

We assessed vaccine-induced antibody responses to the SARS-CoV-2 ancestral virus and Omicron variant before and after booster immunization in 57 patients with B cell malignancies. Over one-third of vaccinated patients at the pre-booster time point were seronegative, and these patients were predominantly on active cancer therapies such as anti-CD20 monoclonal antibody. While booster immunization was able to induce detectable antibodies in a small fraction of seronegative patients, the overall booster benefit was disproportionately evident in patients already seropositive and not receiving active therapy. While ancestral virus- and Omicron variant-reactive antibody levels among individual patients were largely concordant, neutralizing antibodies against Omicron tended to be reduced. Interestingly, in all patients, including those unable to generate detectable antibodies against SARS-CoV-2 spike, we observed comparable levels of EBV- and influenza-reactive antibodies, demonstrating that B cell-targeting therapies primarily impair de novo but not preexisting antibody levels. These findings support rationale for vaccination before cancer treatment.


Assuntos
COVID-19 , Neoplasias , Humanos , Vacinas contra COVID-19 , Formação de Anticorpos , SARS-CoV-2 , Neoplasias/terapia , Anticorpos Monoclonais , Anticorpos Antivirais
14.
bioRxiv ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36711991

RESUMO

Newly emerging Omicron subvariants continue to emerge around the world, presenting potential challenges to current vaccination strategies. This study investigates the extent of neutralizing antibody escape by new subvariants XBB.1.5, CH.1.1, and CA.3.1, as well as their impacts on spike protein biology. Our results demonstrated a nearly complete escape of these variants from neutralizing antibodies stimulated by three doses of mRNA vaccine, but neutralization was rescued by a bivalent booster. However, CH.1.1 and CA.3.1 variants were highly resistant to both monovalent and bivalent mRNA vaccinations. We also assessed neutralization by sera from individuals infected during the BA.4/5 wave of infection and observed similar trends of immune escape. In these cohorts, XBB.1.5 did not exhibit enhanced neutralization resistance over the recently dominant BQ.1.1 variant. Notably, the spike proteins of XBB.1.5, CH.1.1, and CA.3.1 all exhibited increased fusogenicity compared to BA.2, correlating with enhanced S processing. Overall, our results support the administration of new bivalent mRNA vaccines, especially in fighting against newly emerged Omicron subvariants, as well as the need for continued surveillance of Omicron subvariants.

15.
Cell Host Microbe ; 31(1): 9-17.e3, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36476380

RESUMO

The continued evolution of SARS-CoV-2 has led to the emergence of several new Omicron subvariants, including BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Here, we examine the neutralization resistance of these subvariants against sera from 3-dose vaccinated healthcare workers, hospitalized BA.1-wave patients, and BA.4/5-wave patients. We found enhanced neutralization resistance in all new subvariants, especially in the BQ.1 and BQ.1.1 subvariants driven by N460K and K444T mutations, as well as the BA.2.75.2 subvariant driven largely by its F486S mutation. All Omicron subvariants maintained their weakened infectivity in Calu-3 cells, with the F486S mutation driving further diminished titer for the BA.2.75.2 subvariant. Molecular modeling revealed the mechanisms of antibody-mediated immune evasion by R346T, K444T, F486S, and D1199N mutations. Altogether, these findings shed light on the evolution of newly emerging SARS-CoV-2 Omicron subvariants.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Anticorpos , Evasão da Resposta Imune , Mutação , Anticorpos Neutralizantes
16.
Cell Host Microbe ; 30(11): 1518-1526.e4, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36240764

RESUMO

The newly emerged BA.2.75 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant contains 9 additional mutations in its spike (S) protein compared to the ancestral BA.2 variant. Here, we examine the neutralizing antibody escape of BA.2.75 in mRNA-vaccinated and BA.1-infected individuals, as well as the molecular basis underlying functional changes in S. Notably, BA.2.75 exhibits enhanced neutralization resistance over BA.2 but less than the BA.4/5 variant. The G446S and N460K mutations of BA.2.75 are primarily responsible for its enhanced resistance to neutralizing antibodies. The R493Q mutation, a reversion to the prototype sequence, reduces BA.2.75 neutralization resistance. The impact of these mutations is consistent with their locations in common neutralizing antibody epitopes. Further, BA.2.75 shows enhanced cell-cell fusion over BA.2, driven largely by the N460K mutation, which enhances S processing. Structural modeling reveals enhanced receptor contacts introduced by N460K, suggesting a mechanism of potentiated receptor utilization and syncytia formation.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Testes de Neutralização , Anticorpos Antivirais , Proteínas do Envelope Viral
17.
bioRxiv ; 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36299423

RESUMO

Continued evolution of SARS-CoV-2 has led to the emergence of several new Omicron subvariants, including BQ.1, BQ. 1.1, BA.4.6, BF.7 and BA.2.75.2. Here we examine the neutralization resistance of these subvariants, as well as their ancestral BA.4/5, BA.2.75 and D614G variants, against sera from 3-dose vaccinated health care workers, hospitalized BA.1-wave patients, and BA.5-wave patients. We found enhanced neutralization resistance in all new subvariants, especially the BQ.1 and BQ.1.1 subvariants driven by a key N460K mutation, and to a lesser extent, R346T and K444T mutations, as well as the BA.2.75.2 subvariant driven largely by its F486S mutation. The BQ.1 and BQ.1.1 subvariants also exhibited enhanced fusogenicity and S processing dictated by the N460K mutation. Interestingly, the BA.2.75.2 subvariant saw an enhancement by the F486S mutation and a reduction by the D1199N mutation to its fusogenicity and S processing, resulting in minimal overall change. Molecular modelling revealed the mechanisms of receptor-binding and non-receptor binding monoclonal antibody-mediated immune evasion by R346T, K444T, F486S and D1199N mutations. Altogether, these findings shed light on the concerning evolution of newly emerging SARS-CoV-2 Omicron subvariants.

19.
bioRxiv ; 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36032970

RESUMO

The newly emerged BA.2.75 SARS-CoV-2 variant exhibits an alarming 9 additional mutations in its spike (S) protein compared to the ancestral BA.2 variant. Here we examine the neutralizing antibody escape of BA.2.75 in mRNA-vaccinated and BA.1-infected individuals, as well as the molecular basis underlying functional changes in the S protein. Notably, BA.2.75 exhibits enhanced neutralization resistance over BA.2, but less than the BA.4/5 variant. The G446S and N460K mutations of BA.2.75 are primarily responsible for its enhanced resistance to neutralizing antibodies. The R493Q mutation, a reversion to the prototype sequence, reduces BA.2.75 neutralization resistance. The mutational impact is consistent with their locations in common neutralizing antibody epitopes. Further, the BA.2.75 variant shows enhanced cell-cell fusion over BA.2, driven largely by the N460K mutation, which enhances S processing. Structural modeling revealed a new receptor contact introduced by N460K, supporting a mechanism of potentiated receptor utilization and syncytia formation.

20.
bioRxiv ; 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35898337

RESUMO

The recent emergence of the SARS-CoV-2 BA.4/5 and BA.2.12.1 variants has led to rising COVID-19 case numbers and concerns over the continued efficacy of mRNA booster vaccination. Here we examine the durability of neutralizing antibody (nAb) responses against these SARS-CoV-2 Omicron subvariants in a cohort of health care workers 1-40 weeks after mRNA booster dose administration. Neutralizing antibody titers fell by ~1.5-fold 4-6 months and by ~2.5-fold 7-9 months after booster dose, with average nAb titers falling by 11-15% every 30 days, far more stable than two dose induced immunity. Notably, nAb titers from booster recipients against SARS-CoV-2 BA.1, BA.2.12.1, and BA.4/5 variants were ~4.7-, 7.6-, and 13.4-fold lower than against the ancestral D614G spike. However, the rate of waning of booster dose immunity was comparable across variants. Importantly, individuals reporting prior infection with SARS-CoV-2 exhibited significantly higher nAb titers compared to those without breakthrough infection. Collectively, these results highlight the broad and stable neutralizing antibody response induced by mRNA booster dose administration, implicating a significant role of virus evolution to evade nAb specificity, versus waning humoral immunity, in increasing rates of breakthrough infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...