Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Small ; : e2310175, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402424

RESUMO

Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self-passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS-based flexible devices. Here, an effective covalent vdWS-polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2 )and polydimethylsiloxane (PDMS) as a case study, gold-chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension-induced band structure transition in MoS2 . Moreover, no obvious degradation in the devices' structural and electrical properties is identified after numerous mechanical cycle tests. This high-quality lamination enhances the reliability of vdWS-based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics.

2.
ACS Appl Mater Interfaces ; 16(7): 9144-9154, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346142

RESUMO

We demonstrate direct-write patterning of single and multilayer MoS2 via a focused electron beam-induced etching (FEBIE) process mediated with the XeF2 precursor. MoS2 etching is performed at various currents, areal doses, on different substrates, and characterized using scanning electron and atomic force microscopies as well as Raman and photoluminescence spectroscopies. Scanning transmission electron microscopy reveals a sub-40 nm etching resolution and the progression of point defects and lateral etching of the consequent unsaturated bonds. The results confirm that the electron beam-induced etching process is minimally invasive to the underlying material in comparison to ion beam techniques, which damage the subsurface material. Single-layer MoS2 field-effect transistors are fabricated, and device characteristics are compared for channels that are edited via the selected area etching process. The source-drain current at constant gate and source-drain voltage scale linearly with the edited channel width. Moreover, the mobility of the narrowest channel width decreases, suggesting that backscattered and secondary electrons collaterally affect the periphery of the removed area. Focused electron beam doses on single-layer transistors below the etching threshold were also explored as a means to modify/thin the channel layer. The FEBIE exposures showed demonstrative effects via the transistor transfer characteristics, photoluminescence spectroscopy, and Raman spectroscopy. While strategies to minimize backscattered and secondary electron interactions outside of the scanned regions require further investigation, here, we show that FEBIE is a viable approach for selective nanoscale editing of MoS2 devices.

3.
ACS Appl Mater Interfaces ; 16(3): 3665-3673, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193383

RESUMO

Tunable electronic materials that can be switched between different impedance states are fundamental to the hardware elements for neuromorphic computing architectures. This "brain-like" computing paradigm uses highly paralleled and colocated data processing, leading to greatly improved energy efficiency and performance compared to traditional architectures in which data have to be frequently transferred between processor and memory. In this work, we use scanning microwave impedance microscopy for nanoscale electrical and electronic characterization of two-dimensional layered semiconductor PdSe2 to probe neuromorphic properties. The local resolution of tens of nanometers reveals significant differences in electronic behavior between and within PdSe2 nanosheets (NSs). In particular, we detected both n-type and p-type behaviors, although previous reports only point to ambipolar n-type dominating characteristics. Nanoscale capacitance-voltage curves and subsequent calculation of characteristic maps revealed a hysteretic behavior originating from the creation and erasure of Se vacancies as well as the switching of defect charge states. In addition, stacks consisting of two NSs show enhanced resistive and capacitive switching, which is attributed to trapped charge carriers at the interfaces between the stacked NSs. Stacking n- and p-type NSs results in a combined behavior that allows one to tune electrical characteristics. As local inhomogeneities of electrical and electronic behavior can have a significant impact on the overall device performance, the demonstrated nanoscale characterization and analysis will be applicable to a wide range of semiconducting materials.

4.
Adv Mater ; 35(14): e2210116, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36635517

RESUMO

The ability to deterministically fabricate nanoscale architectures with atomic precision is the central goal of nanotechnology, whereby highly localized changes in the atomic structure can be exploited to control device properties at their fundamental physical limit. Here, an automated, feedback-controlled atomic fabrication method is reported and the formation of 1D-2D heterostructures in MoS2 is demonstrated through selective transformations along specific crystallographic orientations. The atomic-scale probe of an aberration-corrected scanning transmission electron microscope (STEM) is used, and the shape and symmetry of the scan pathway relative to the sample orientation are controlled. The focused and shaped electron beam is used to reliably create Mo6 S6 nanowire (MoS-NW) terminated metallic-semiconductor 1D-2D edge structures within a pristine MoS2 monolayer with atomic precision. From these results, it is found that a triangular beam path aligned along the zig-zag sulfur terminated (ZZS) direction forms stable MoS-NW edge structures with the highest degree of fidelity without resulting in disordering of the surrounding MoS2 monolayer. Density functional theory (DFT) calculations and ab initio molecular dynamic simulations (AIMD) are used to calculate the energetic barriers for the most stable atomic edge structures and atomic transformation pathways. These discoveries provide an automated method to improve understanding of atomic-scale transformations while opening a pathway toward more precise atomic-scale engineering of materials.

5.
Adv Sci (Weinh) ; 9(26): e2201336, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35856086

RESUMO

It is widely accepted that solid-state membranes are indispensable media for the graphene process, particularly transfer procedures. But these membranes inevitably bring contaminations and residues to the transferred graphene and consequently compromise the material quality. This study reports a newly observed free-standing graphene-water membrane structure, which replaces the conventional solid-state supporting media with liquid film to sustain the graphene integrity and continuity. Experimental observation, theoretical model, and molecular dynamics simulations consistently indicate that the high surface tension of pure water and its large contact angle with graphene are essential factors for forming such a membrane structure. More interestingly, water surface tension ensures the flatness of graphene layers and renders high transfer quality on many types of target substrates. This report enriches the understanding of the interactions on reduced dimensional material while rendering an alternative approach for scalable layered material processing with ensured quality for advanced manufacturing.


Assuntos
Grafite , Grafite/química , Simulação de Dinâmica Molecular , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...