Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(4): 1036-1045, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36683280

RESUMO

Methyl formate (MF) is the smallest carboxylic ester and currently considered a promising alternative fuel. It can also serve as a model compound to study the combustion chemistry of the ester group, which is a typical structural feature in many biodiesel components. In the present work, the pyrolysis of MF was investigated behind reflected shock waves at temperatures between 1430 and 2070 K at a nominal pressure of 1.1 bar. Both time-resolved hydrogen atom resonance absorption spectroscopy (H-ARAS) and time-resolved time-of-flight mass spectrometry (TOF-MS) were used for species detection. Additionally, the reaction of MF and perdeuterated MF-d4 with H atoms was investigated at temperatures between 1000 and 1300 K at nominal pressures of 0.4 and 1.1 bar with H-ARAS. In the latter experiments, ethyl iodide served as precursor for H atoms. Rate coefficients of seven parallel unimolecular decomposition channels of MF and five parallel reaction channels of the MF + H reaction were calculated from statistical rate theory on the basis of molecular and transition state data from quantum chemical calculations. These calculated rate coefficients were implemented into an MF pyrolysis/oxidation mechanism from the literature, and the experimental concentration-time profiles of H (from ARAS) as well as MF, CH3OH, HCHO, and CO (from TOF-MS) were modeled. It turned out that the literature mechanism, which was originally validated against flow-reactor experiments, ignition delay times, and laminar burning velocities, was generally able to fit also the concentration-time profiles from the shock tube experiments reasonably well. The agreement could still be improved by substituting the original rate coefficients, which were estimated from structure-reactivity relationships, by the values calculated from statistical rate theory in the present work. Details of the channel branching are discussed, and the updated mechanism is given, also in machine-readable form.

6.
Faraday Discuss ; 238(0): 665-681, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796568

RESUMO

Branching ratios of competing unimolecular reactions often exhibit a complicated temperature and pressure dependence that makes modelling of complex reaction systems in the gas phase difficult. In particular, the competition between steps proceeding via tight and loose transition states is known to present a problem. A recent example from the field of combustion chemistry is the unimolecular decomposition of CH3OCH2OCH3 (DMM), which is discussed as an alternative fuel accessible from sustainable sources. It is shown by a detailed master equation analysis with energy- and angular-momentum-resolved specific rate coefficients from RRKM theory and from the simplified statistical adiabatic channel model, how channel switching of DMM depends on temperature and pressure, and under which experimental conditions which channels prevail. The necessary molecular and energy data were obtained from quantum-chemical calculations at the CCSD(F12*)(T*)/cc-pVQZ-F12//B2PLYP-D3/def2-TZVPP level of theory. A parameterization describing the channel branching over extended ranges of temperature and pressure is derived, and the model is used to simulate shock tube experiments with detection by atomic resonance absorption spectroscopy and time-of-flight mass spectrometry. The agreement between the simulated and experimental concentration-time profiles is very good. The temperature and pressure dependence of the channel branching is rationalized, and the data are presented in a form that can be readily implemented into DMM combustion models.

7.
J Phys Chem A ; 124(37): 7416-7426, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32816480

RESUMO

Furans are promising second generation biofuels with comparable energy densities to conventional fossil fuels. Combustion of furans is initiated and controlled to a large part by reactions with OH radicals, the kinetics of which are critical to understand the processes occurring under conditions relevant to low-temperature combustion. The reactions of OH radicals with furan (OH + F, R1), 2-methyl furan (OH + 2-MF, R2), and 2,5-dimethyl furan (OH + 2,5-DMF, R3) have been studied in this work over the temperature range 294-668 K at pressures between 5 mbar and 10 bar using laser flash photolysis coupled with laser-induced fluorescence (LIF) spectroscopy to generate and monitor OH radicals under pseudo-first-order conditions. Measurements at p ≤ 200 mbar were made in N2, using H2O2 or (CH3)3COOH radical precursors, while those at p ≥ 2 bar were made in He, using HNO3 as the radical precursor. The kinetics of reactions R1-R3 were observed to display a negative dependence on temperature over the range investigated, indicating the dominance of addition reactions under such conditions, with no significant dependence on pressure observed. Master equation calculations are in good agreement with the observed kinetics, and a combined parametrization of addition channels and abstraction channels for R1-R3 is provided on the basis of this work and previous shock tube measurements at higher temperatures. This work significantly extends the temperature range previously investigated for R1 and represents the first temperature-dependent measurements of R2 and R3 at temperatures relevant for atmospheric chemistry and low-temperature combustion.

8.
Phys Chem Chem Phys ; 22(10): 5523-5530, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32104877

RESUMO

Oxymethylene ethers are often considered as promising fuel additives to reduce the emissions of soot and NOx from diesel engines. Dimethoxymethane (DMM) is the smallest member of this class of compounds and therefore particularly suitable to study the reactivity of the characteristic methylenedioxy group (O-CH2-O). In this context, we investigated the pyrolysis of DMM behind reflected shock waves at temperatures between 1100 and 1600 K and nominal pressures of 0.4 and 4.7 bar by monitoring the formation of H atoms with time-resolved atom resonance absorption spectroscopy. Rate coefficients for the C-O bond fission reactions of DMM were inferred from the recorded [H](t) profiles, and a pronounced temperature and pressure dependence of the rate coefficients was found. To rationalize this finding, we characterized the relevant parts of the potential energy surface of DMM by performing quantum chemical calculations at the CCSD(F12*)(T*)/cc-pVQZ-F12//B2PLYP-D3/def2-TZVPP level of theory. On the basis of the results, a two-channel master equation accounting for the two different C-O bond-fission reactions of DMM was set up and solved. Specific rate coefficients were calculated from the simplified Statistical Adiabatic Channel Model. The branching between the two reaction channels was modeled, and the CH3OCH2O + CH3 product channel was found to be clearly dominating. A Troe parameterization for the pressure dependence of this channel was derived. To enable implementation of both channels into kinetic mechanisms for combustion modeling, 'log p' parameterizations of the rate coefficients for both reaction channels are also given and were implemented into a literature mechanism for DMM oxidation. With this slightly modified mechanism, the results of our experiments could be adequately modeled. The role of competing molecular (i.e. nonradical) decomposition channels of DMM was also quantum-chemically checked, but no indications for such channels could be found.

9.
J Phys Chem A ; 123(46): 9893-9904, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31714775

RESUMO

In this study, the pyrolysis of furan (F) and its two methyl-substituted derivatives 2-methylfuran (2-MF) and 2,5-dimethylfuran (2,5-DMF) was investigated behind reflected shock waves at pressures near 1 bar in Ne as the bath gas. Concentration-time profiles of different stable species (reactants, intermediates, and products) were recorded simultaneously with high-repetition time-of-flight mass spectrometry and compared to results from simulations with a recently published, combined F/2-MF/2,5-DMF oxidation mechanism that was slightly modified already in another publication to describe the formation of H atoms in these pyrolysis systems. The temperature ranges covered in our experiments were chosen in line with the different thermal stabilities of the three reactants (F: T = 1050-1920 K; 2-MF: T = 1060-1900 K; 2,5-DMF: T = 1000-1800 K). In general, we obtained satisfactory agreement of the experimental and modeling results. To clarify the most important reaction routes for the formation of the detected species, we performed extensive sensitivity and rate-of-production analyses. The influence of increasing methylation of the furan ring on the formation and consumption of the different species is discussed in detail. Experimental concentration-time profiles are given in tabular form in the Supporting Information to enable tests of future mechanism developments.

10.
J Phys Chem A ; 122(32): 6500-6508, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30036056

RESUMO

The methyl-substituted furan derivatives 2-methylfuran (2-MF) and 2,5-dimethylfuran (2,5-DMF) are often discussed as alternative fuels. Despite the large number of mechanistic studies on the pyrolysis and oxidation of 2-MF, 2,5-DMF, and unsubstituted furan (F), detailed kinetic investigations of the initial reaction steps are scarce. In this work, we report on shock-tube studies with detection of hydrogen atoms by atom resonance absorption spectroscopy to investigate the thermal decomposition of F, 2-MF, and 2,5-DMF. Hydrogen atom concentration-time profiles were recorded behind reflected shock waves at temperatures between 1200 and 1900 K and pressures between 0.7 and 1.6 bar with Ar as the bath gas. The recorded profiles were compared with results from kinetic simulations performed on the basis of a joint F/2-MF/2,5-DMF oxidation mechanism recently published. Kinetic parameters for a small number of reactions with high sensitivities for the formation and consumption of H atoms were adapted by taking values from other references to improve the agreement of the experimentally determined and simulated concentration-time profiles. In this way, an adequate description of the H atom concentration-time profiles for all three furan derivatives with the joint mechanism could be achieved. On the basis of this adapted mechanism, the formation pathways of H atoms in the pyrolysis of all three furan derivatives were identified and analyzed. It turned out that the formation of H atoms in the case of 2-MF and 2,5-DMF is governed by a competition between H split-off from the methyl group(s) of the reactant molecule as well as from the primary ring-opening product. In the case of F, only decomposition steps of the ring-opening product are relevant. The adapted mechanism is given in machine-readable form for modeling purposes, and the alterations made are discussed.

11.
Phys Chem Chem Phys ; 20(16): 10561-10568, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29616689

RESUMO

Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.

12.
Phys Chem Chem Phys ; 19(28): 18128-18146, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28681879

RESUMO

Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

13.
Chem Commun (Camb) ; 53(29): 4132-4135, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28352877

RESUMO

Unsaturated RO2 radicals from the ozonolysis of cyclodienes can readily undergo an endo-cyclization step under atmospheric conditions forming a new ring-containing RO2 radical after further O2 addition. This path represents an extension of the atmospheric autoxidation scheme forming highly oxidized multifunctional organic compounds (HOMs). HOMs play an important role for Earth's organic aerosol burden.

14.
J Phys Chem A ; 119(35): 9225-35, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26266823

RESUMO

The photolysis of o-nitrophenol (o-NP), a typical push-pull molecule, is of current interest in atmospheric chemistry as a possible source of nitrous acid (HONO). To characterize the largely unknown photolysis mechanism, the dynamics of the lowest lying excited singlet state (S1) of o-NP was investigated by means of femtosecond transient absorption spectroscopy in solution, time-resolved photoelectron spectroscopy (TRPES) in the gas phase and quantum chemical calculations. Evidence of the unstable aci-nitro isomer is provided both in the liquid and in the gas phase. Our results indicate that the S1 state displays strong charge transfer character, which triggers excited state proton transfer from the OH to the NO2 group as evidenced by a temporal shift of 20 fs of the onset of the photoelectron spectrum. The proton transfer itself is found to be coupled to an out-of-plane rotation of the newly formed HONO group, finally leading to a conical intersection between S1 and the ground state S0. In solution, return to S0 within 0.2-0.3 ps was monitored by stimulated emission. As a competitive relaxation channel, ultrafast intersystem crossing to the upper triplet manifold on a subpicosecond time scale occurs both in solution and in the gas phase. Due to the ultrafast singlet dynamics, we conclude that the much discussed HONO split-off is likely to take place in the triplet manifold.

15.
Phys Chem Chem Phys ; 17(30): 19862-73, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26159709

RESUMO

Stabilized Criegee Intermediates (sCIs) have been identified as oxidants of atmospheric trace gases such as SO2, NO2, carboxylic acids or carbonyls. The atmospheric sCI concentrations, and accordingly their importance for trace gas oxidation, are controlled by the rate of the most important loss processes, very likely the unimolecular reactions and the reaction with water vapour (monomer and dimer) ubiquitously present at high concentrations in the troposphere. In this study, the rate coefficients of the unimolecular reaction of the simplest sCI, formaldehyde oxide, CH2OO, and its bimolecular reaction with the water monomer have been experimentally determined at T = (297 ± 1) K and at atmospheric pressure by using a free-jet flow system. CH2OO was produced by the reaction of ozone with C2H4, and CH2OO concentrations were probed indirectly by detecting H2SO4 after titration with SO2. Time-resolved experiments yield a rate coefficient of the unimolecular reaction of k(uni) = (0.19 ± 0.07) s(-1), a value that is supported by quantum-chemical and statistical rate theory calculations as well as by additional measurements performed under CH2OO steady-state conditions. A rate coefficient of k(CH2OO+H2O) = (3.2 ± 1.2) × 10(-16) cm(3) molecule(-1) s(-1) has been determined for sufficiently low H2O concentrations (<10(15) molecule cm(-3)) that allow separation from the CH2OO reaction with the water dimer. In order to evaluate the accuracy of the experimental approach, the rate coefficients of the reactions with acetaldehyde and acetone were reinvestigated. The obtained rate coefficients k(CH2OO+acetald) = (1.7 ± 0.5) × 10(-12) and k(CH2OO+acetone) = (3.4 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) are in good agreement with literature data.

16.
J Phys Chem A ; 119(28): 7838-46, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25853321

RESUMO

The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions.

17.
Phys Chem Chem Phys ; 17(10): 7046-59, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25687949

RESUMO

The reactions of OH radicals with CH3NHCHO (N-methylformamide, MF) and (CH3)2NCHO (N,N-dimethylformamide, DMF) have been studied by experimental and computational methods. Rate coefficients were determined as a function of temperature (T = 260-295 K) and pressure (P = 30-600 mbar) by the flash photolysis/laser-induced fluorescence technique. OH radicals were produced by laser flash photolysis of 2,4-pentanedione or tert-butyl hydroperoxide under pseudo-first order conditions in an excess of the corresponding amide. The rate coefficients obtained show negative temperature dependences that can be parameterized as follows: kOH+MF = (1.3 ± 0.4) × 10(-12) exp(3.7 kJ mol(-1)/(RT)) cm(3) s(-1) and kOH+DMF = (5.5 ± 1.7) × 10(-13) exp(6.6 kJ mol(-1)/(RT)) cm(3) s(-1). The rate coefficient kOH+MF shows very weak positive pressure dependence whereas kOH+DMF was found to be independent of pressure. The Arrhenius equations given, within their uncertainty, are valid for the entire pressure range of our experiments. Furthermore, MF and DMF smog-chamber photo-oxidation experiments were monitored by proton-transfer-reaction time-of-flight mass spectrometry. Atmospheric MF photo-oxidation results in 65% CH3NCO (methylisocyanate), 16% (CHO)2NH, and NOx-dependent amounts of CH2[double bond, length as m-dash]NH and CH3NHNO2 as primary products, while DMF photo-oxidation results in around 35% CH3N(CHO)2 as primary product and 65% meta-stable (CH3)2NC(O)OONO2 degrading to NOx-dependent amounts of CH3N[double bond, length as m-dash]CH2 (N-methylmethanimine), (CH3)2NNO (N-nitroso dimethylamine) and (CH3)2NNO2 (N-nitro dimethylamine). The potential for nitramine formation in MF photo-oxidation is comparable to that of methylamine whereas the potential to form nitrosamine and nitramine in DMF photo-oxidation is larger than for dimethylamine. Quantum chemistry supported atmospheric degradation mechanisms for MF and DMF are presented. Rate coefficients and initial branching ratios calculated with statistical rate theory based on molecular data from quantum chemical calculations at the CCSD(T*)-F12a/aug-cc-pVTZ//MP2/aug-cc-pVTZ level of theory show satisfactory agreement with the experimental results. It turned out that adjustment of calculated threshold energies by 0.2 to 8.8 kJ mol(-1) lead to agreement between experimental and predicted results.

18.
J Am Chem Soc ; 136(9): 3607-16, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24564371

RESUMO

In order to characterize the oxidation of metallic surfaces, the reactions of O2 with a number of Al(x)(-) and, for the first time, Ga(x)(-) clusters as molecular models have been investigated, and the results are presented here for x = 9-14. The rate coefficients were determined with FT-ICR mass spectrometry under single-collision conditions at O2 pressures of ~10(-8) mbar. In this way, the qualitatively known differences in the reactivities of the even- and odd-numbered clusters toward O2 could be quantified experimentally. To obtain information about the elementary steps, we additionally performed density functional theory calculations. The results show that for both even- and odd-numbered clusters the formation of the most stable dioxide species, [M(x)O2](-), proceeds via the less stable peroxo species, [M(x)(+)···O2(2-)](-), which contains M-O-O-M moieties. We conclude that the formation of these peroxo intermediates may be a reason for the decreased reactivity of the metal clusters toward O2. This could be one of the main reasons why O2 reactions with metal surfaces proceed more slowly than Cl2 reactions with such surfaces, even though O2 reactions with both Al metal and Al clusters are more exothermic than are reactions of Cl2 with them. Furthermore, our results indicate that the spin-forbidden reactions of (3)O2 with closed-shell clusters and the spin-allowed reactions with open-shell clusters to give singlet [M(x)(+)···O2(2-)](-) are the root cause for the observed even/odd differences in reactivity.

19.
Angew Chem Int Ed Engl ; 53(3): 715-9, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24402798

RESUMO

Recently, direct kinetic experiments have shown that the oxidation of sulfur dioxide to sulfur trioxide by reaction with stabilized Criegee intermediates (CIs) is an important source of sulfuric acid in the atmosphere. So far, only small CIs, generated in photolysis experiments, have been directly detected. Herein, it is shown that large, stabilized CIs can be detected in the gas phase by FTIR spectroscopy during the ozonolysis of ß-pinene. Their transient absorption bands between 930 and 830 cm(-1) appear only in the initial phase of the ozonolysis reaction when the scavenging of stabilized CIs by the reaction products is slow. The large CIs react with sulfur dioxide to give sulfur trioxide and nopinone with a yield exceeding 80%. Reactant consumption and product formation in time-resolved ß-pinene ozonolysis experiments in the presence of sulfur dioxide have been kinetically modeled. The results suggest a fast reaction of sulfur dioxide with CIs arising from ß-pinene ozonolysis.


Assuntos
Compostos Bicíclicos com Pontes/química , Monoterpenos/química , Ozônio/química , Dióxido de Enxofre/química , Alcenos/química , Monoterpenos Bicíclicos , Radical Hidroxila/química , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Óxidos de Enxofre/síntese química , Óxidos de Enxofre/química
20.
J Phys Chem A ; 117(35): 8343-51, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23914942

RESUMO

The kinetic isotope effect of the reactions OH + CH3OCH3 (DME) and OH + CD3OCD3 (DME-d6) was experimentally and theoretically studied. Experiments were carried out in a slow-flow reactor at pressures between 5 and 21 bar (helium as bath gas) with production of OH by laser flash photolysis of HNO3 and time-resolved detection of OH by laser-induced fluorescence. The temperature dependences of the rate coefficients obtained can be described by the following modified Arrhenius expressions: k(OH+DME) = (4.5 ± 1.3) × 10(-16) (T/K)(1.48) exp(66.6 K/T) cm(3) s(-1) (T = 292-650 K, P = 5.9-20.9 bar) and k(OH+DME-d6) = (7.3 ± 2.2) × 10(-23) (T/K)(3.57) exp(759.8 K/T) cm(3) s(-1) (T = 387-554 K, P = 13.0-20.4 bar). A pressure dependence of the rate coefficients was not observed. The agreement of our experimental results for k(OH+DME) with values from other authors is very good, and from a fit to all available literature data, we derived the following modified Arrhenius expression, which reproduces the values obtained in the temperature range T = 230-1500 K at pressures between 30 mbar and 21 bar to better than within ±20%: k(OH+DME) = 8.45 × 10(-18) (T/K)(2.07) exp(262.2 K/T) cm(3) s(-1). For k(OH+DME-d6), to the best of our knowledge, this is the first experimental study. For the analysis of the reaction pathway and the kinetic isotope effect, potential energy diagrams were calculated by using three different quantum chemical methods: (I) CCSD(T)/cc-pV(T,Q)Z//MP2/6-311G(d,p), (II) CCSD(T)/cc-pV(T,Q)Z//CCSD/cc-pVDZ, and (III) CBS-QB3. In all three cases, the reaction is predicted to proceed via a prereaction OH-ether complex with subsequent intramolecular hydrogen abstraction and dissociation to give the methoxymethyl radical and water. Overall rate coefficients were calculated by assuming a thermal equilibrium between the reactants and the prereaction complex and by calculating the rate coefficients of the hydrogen abstraction step from canonical transition state theory. The results based on the molecular data from methods (I) and (II) showed a satisfactory agreement with the experimental values, which indicates that the pre-equilibrium assumption is reasonable under our conditions. In the case of method (III), the isotope effect was significantly underpredicted. The reason for this discrepancy was identified in a fundamentally differing reaction coordinate. Obviously, the B3LYP functional applied in method (III) for geometry and frequency calculations is inadequate to describe such systems, which is in line with earlier findings of other authors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...