Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(2): 307-319.e8, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36736320

RESUMO

Gaucher disease (GD) is the most common lysosomal storage disease caused by recessive mutations in the degrading enzyme of ß-glucosylceramide (ß-GlcCer). However, it remains unclear how ß-GlcCer causes severe neuronopathic symptoms, which are not fully treated by current therapies. We herein found that ß-GlcCer accumulating in GD activated microglia through macrophage-inducible C-type lectin (Mincle) to induce phagocytosis of living neurons, which exacerbated Gaucher symptoms. This process was augmented by tumor necrosis factor (TNF) secreted from activated microglia that sensitized neurons for phagocytosis. This characteristic pathology was also observed in human neuronopathic GD. Blockade of these pathways in mice with a combination of FDA-approved drugs, minocycline (microglia activation inhibitor) and etanercept (TNF blocker), effectively protected neurons and ameliorated neuronopathic symptoms. In this study, we propose that limiting unrestrained microglia activation using drug repurposing provides a quickly applicable therapeutic option for fatal neuronopathic GD.


Assuntos
Doença de Gaucher , Camundongos , Animais , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glucosilceramidase/uso terapêutico , Glucosilceramidas/metabolismo , Glucosilceramidas/uso terapêutico , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose
2.
MAbs ; 13(1): 1961349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432559

RESUMO

MAbTope is a docking-based method for the determination of epitopes. It has been used to successfully determine the epitopes of antibodies with known 3D structures. However, during the antibody discovery process, this structural information is rarely available. Although we already have evidence that homology models of antibodies could be used instead of their 3D structure, the choice of the template, the methodology for homology modeling and the resulting performance still have to be clarified. Here, we show that MAbTope has the same performance when working with homology models of the antibodies as compared to crystallographic structures. Moreover, we show that even low-quality models can be used. We applied MAbTope to determine the epitope of dupilumab, an anti- interleukin 4 receptor alpha subunit therapeutic antibody of unknown 3D structure, that we validated experimentally. Finally, we show how the MAbTope-determined epitopes for a series of antibodies targeting the same protein can be used to predict competitions, and demonstrate the accuracy with an experimentally validated example.3D: three-dimensionalRMSD: root mean square deviationCDR: complementary-determining regionCPU: central processing unitsVH: heavy chain variable regionVL: light chain variable regionscFv: single-chain variable fragmentsVHH: single-chain antibody variable regionIL4Rα: Interleukin 4 receptor alpha chainSPR: surface plasmon resonancePDB: protein data bankHEK293: Human embryonic kidney 293 cellsEDTA: Ethylenediaminetetraacetic acidFBS: Fetal bovine serumANOVA: Analysis of varianceEGFR: Epidermal growth factor receptorPE: PhycoerythrinAPC: AllophycocyaninFSC: forward scatterSSC: side scatterWT: wild typeKeywords: MAbTope, Epitope Mapping, Molecular docking, Antibody modeling, Antibody-antigen docking.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Antígenos/imunologia , Mapeamento de Epitopos , Epitopos , Subunidade alfa de Receptor de Interleucina-4/imunologia , Simulação de Acoplamento Molecular , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Antígenos/genética , Antígenos/metabolismo , Sítios de Ligação de Anticorpos , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Subunidade alfa de Receptor de Interleucina-4/genética , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
3.
Methods Mol Biol ; 2132: 119-128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32306320

RESUMO

C-type lectins bind to carbohydrate structures in a Ca2+-dependent manner. Some transmembrane forms of lectins act as innate immune receptors and induce signal transduction pathways in macrophages and dendritic cells (DCs). Expressing these receptors in cells bearing a reporter gene is a useful tool to investigate ligand binding and recognition. However, it cannot be used to quantify the precise affinity of the interaction, and the involvement of other proteins remains a possibility. Direct binding between a receptor and its ligand can be investigated using an immunoglobulin receptor (Ig)-fused soluble protein. This binding can be assessed using enzyme-linked immunosorbent assays and flow cytometry, and the fusion protein may also be used in a glycan array. In this chapter, we explain the generation of Ig fusion proteins and subsequent binding assays using these proteins.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Animais , Cálcio/metabolismo , Humanos , Lectinas Tipo C/genética , Ligantes , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo
4.
J Biol Chem ; 295(17): 5807-5817, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32139512

RESUMO

The C-type lectin receptors (CLRs) form a family of pattern recognition receptors that recognize numerous pathogens, such as bacteria and fungi, and trigger innate immune responses. The extracellular carbohydrate-recognition domain (CRD) of CLRs forms a globular structure that can coordinate a Ca2+ ion, allowing receptor interactions with sugar-containing ligands. Although well-conserved, the CRD fold can also display differences that directly affect the specificity of the receptors for their ligands. Here, we report crystal structures at 1.8-2.3 Å resolutions of the CRD of murine dendritic cell-immunoactivating receptor (DCAR, or Clec4b1), the CLR that binds phosphoglycolipids such as acylated phosphatidyl-myo-inositol mannosides (AcPIMs) of mycobacteria. Using mutagenesis analysis, we identified critical residues, Ala136 and Gln198, on the surface surrounding the ligand-binding site of DCAR, as well as an atypical Ca2+-binding motif (Glu-Pro-Ser/EPS168-170). By chemically synthesizing a water-soluble ligand analog, inositol-monophosphate dimannose (IPM2), we confirmed the direct interaction of DCAR with the polar moiety of AcPIMs by biolayer interferometry and co-crystallization approaches. We also observed a hydrophobic groove extending from the ligand-binding site that is in a suitable position to interact with the lipid portion of whole AcPIMs. These results suggest that the hydroxyl group-binding ability and hydrophobic groove of DCAR mediate its specific binding to pathogen-derived phosphoglycolipids such as mycobacterial AcPIMs.


Assuntos
Lectinas Tipo C/metabolismo , Mycobacterium/metabolismo , Fosfatidilinositóis/metabolismo , Receptores Imunológicos/metabolismo , Animais , Cristalografia por Raios X , Lectinas Tipo C/química , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Receptores Imunológicos/química
5.
J Med Chem ; 61(3): 1045-1060, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29290115

RESUMO

Effective Th1-stimulating vaccine adjuvants typically activate antigen presenting cells (APCs) through pattern recognition receptors (PRRs). Macrophage inducible C-type lectin (Mincle) is a PRR expressed on APCs and has been identified as a target for Th1-stimulating adjuvants. Herein, we report on the synthesis and adjuvanticity of rationally designed brartemicin analogues containing long-chain lipids and demonstrate that they are potent Mincle agonists that activate APCs to produce inflammatory cytokines in a Mincle-dependent fashion. Mincle binding, however, does not directly correlate to a functional immune response. Mutation studies indicated that the aromatic residue of lead compound 9a has an important interaction with Mincle Arg183. In vivo assessment of 9a highlighted the capability of this analogue to augment the Th1 response to a model vaccine antigen. Taken together, our results show that lipophilic brartemicin analogues are potent Mincle agonists and that 9a has superior in vivo adjuvant activity compared to TDB.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Glicolipídeos/química , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Trealose/análogos & derivados , Adjuvantes Imunológicos/metabolismo , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Trealose/química , Trealose/metabolismo , Trealose/farmacologia , Vacinas/imunologia
6.
Chemistry ; 23(64): 16374-16379, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28881056

RESUMO

Synthesis of O-methylated glycolipids via direct stereoselective glycosidation whose sugar moieties are related to those in phenolic glycolipids (PGLs) is reported. Treatment of 2-O-methyl-rhamnosyl imidates with I2 and nBu4 NOTf resulted in their activation under low temperature and provided the α-rhamnosides with excellent α-selectivity. nBu4 NOTf enhanced the electorophilicity of iodine. This methodology improved the efficiency of the synthesis of both PGL-1 and PGL-tb1 sugars. The process involved the formation of 2-O-naphthylmethyl-α-rhamnoside and 2-O-methyl-α-fucoside. Sequential Suzuki-Miyaura coupling using synthetic glycosides, boracyclane, and aryl bromides provided glycolipids related to PGL sugars, and was accomplished with a one-pot process. Finally, we elucidated the immunosuppressive activities of all these synthetic compounds and found that a phenyl 3-O-α-rhamnosyl-2-O-methyl-α-rhamnoside possessing a 6-(2-naphthyl)hexyl group exhibited the strongest inhibitory effect.


Assuntos
Glicolipídeos/química , Produtos Biológicos/química , Catálise , Glicolipídeos/síntese química , Glicosilação , Imunossupressores/química , Iodetos/química , Conformação Molecular , Paládio/química , Fenóis/química , Estereoisomerismo
7.
Proc Natl Acad Sci U S A ; 114(16): E3285-E3294, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373578

RESUMO

Sensing and reacting to tissue damage is a fundamental function of immune systems. Macrophage inducible C-type lectin (Mincle) is an activating C-type lectin receptor that senses damaged cells. Notably, Mincle also recognizes glycolipid ligands on pathogens. To elucidate endogenous glycolipids ligands derived from damaged cells, we fractionated supernatants from damaged cells and identified a lipophilic component that activates reporter cells expressing Mincle. Mass spectrometry and NMR spectroscopy identified the component structure as ß-glucosylceramide (GlcCer), which is a ubiquitous intracellular metabolite. Synthetic ß-GlcCer activated myeloid cells and induced production of inflammatory cytokines; this production was abrogated in Mincle-deficient cells. Sterile inflammation induced by excessive cell death in the thymus was exacerbated by hematopoietic-specific deletion of degrading enzyme of ß-GlcCer (ß-glucosylceramidase, GBA1). However, this enhanced inflammation was ameliorated in a Mincle-deficient background. GBA1-deficient dendritic cells (DCs) in which ß-GlcCer accumulates triggered antigen-specific T-cell responses more efficiently than WT DCs, whereas these responses were compromised in DCs from GBA1 × Mincle double-deficient mice. These results suggest that ß-GlcCer is an endogenous ligand for Mincle and possesses immunostimulatory activity.


Assuntos
Células Dendríticas/imunologia , Glucosilceramidase/fisiologia , Glucosilceramidas/imunologia , Inflamação/imunologia , Lectinas Tipo C/fisiologia , Proteínas de Membrana/fisiologia , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Glucosilceramidas/metabolismo , Imunização , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...