Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 450: 19-29, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28837839

RESUMO

Streptococcus pneumoniae is a globally important encapsulated human pathogen with approximately 100 different serotypes recognized. Serogroup 23 consists of serotype 23F, present in licensed vaccines, and emerging serotypes 23A and 23B. Here, we report the previously unknown structures of the pneumococcal capsular polysaccharides serotype 23A and 23B determined using genetic analysis, NMR spectroscopy, composition and linkage analysis and Smith degradation (of polysaccharide 23A). The structure of the serotype 23A capsular polysaccharide is: →4)-ß-D-Glcp-(1→3)-[[α-L-Rhap-(1→2)]-[Gro-(2→P→3)]-ß-D-Galp-(1→4)]-ß-L-Rhap-(1→. This structure differs from polysaccharide 23F as it features a disaccharide backbone and the di-substituted ß-Gal is linked to ß-Rha as a side chain. This is due to the different polymerization position catalysed by the unusually divergent repeat unit polymerase Wzy in the 23A cps biosynthesis locus. Steric crowding in 23A, confirmed by molecular models, causes the NMR signal for H-1 of the di-substituted 2,3-ß-Gal to resonate in the α-anomeric region. The structure of the serotype 23B capsular polysaccharide is the same as 23F, but without the terminal α-Rha: →4)-ß-D-Glcp-(1→4)-[Gro-(2→P→3)]-ß-D-Galp-(1→4)-ß-L-Rhap-(1→. The immunodominant terminal α-Rha of 23F is more sterically crowded in 23A and absent in 23B. This may explain the reported typing cross reactions for serotype 23F: slight with 23A and none with 23B.


Assuntos
Cápsulas Bacterianas/química , Polissacarídeos Bacterianos/química , Streptococcus pneumoniae/química , Streptococcus pneumoniae/genética , Sequência de Carboidratos , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie
2.
Microbes Infect ; 17(3): 184-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25462568

RESUMO

In malaria, the evidence concerning the nucleotide-binding, oligomerization domain (NOD) 2 (NOD2) receptor is fragmented and the stimuli that might activate NOD2 are not well characterized. We investigated the role of NOD2 in vitro in the response of macrophages to Plasmodium falciparum products. Immortalized or primary bone marrow derived macrophages from wild type C57Bl/6 mice, or knockout mice for NOD2 or its adaptor proteins, were either primed with interferon gamma or left untreated, and stimulated with parasite products. Both lysates of infected erythrocytes or hemozoin induced higher levels of nitric oxide in primed than in unprimed wild type macrophages. When stimulated with hemozoin, primed macrophages knockout for NOD2, or for its adaptor proteins, produced significantly lower nitric oxide levels compared to wild type cells. Differently from hemozoin, the use of ß-hematin (synthetic hemozoin) as stimulus showed that NOD2 is dispensable. Furthermore, the production of inflammatory cytokines by wild type cells treated with hemozoin was not dependent on NOD2. These data indicate that parasite components present in the hemozoin, differently from ß-hematin, induce the production of nitric oxide through the activation of NOD2, whereas the production of inflammatory cytokines, like TNF-α or MIP-2 (CXCL2), seems to be NOD2 independent.


Assuntos
Hemeproteínas/imunologia , Malária/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Animais , Citocinas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/imunologia
3.
Biochemistry ; 49(47): 10107-16, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20979358

RESUMO

In eukaryotic cells, neutral lipids serve as major energy storage molecules; however, in Plasmodium falciparum, a parasite responsible for causing malaria in humans, neutral lipids may have other functions during the intraerythrocytic stage of the parasite life cycle. Specifically, experimental data suggest that neutral lipid structures behave as a catalyst for the crystallization of hemozoin, a detoxification byproduct of several blood-feeding organisms, including malaria parasites. Synthetic neutral lipid droplets (SNLDs) were produced by depositing a lipid blend solution comprised of mono- and diglycerides onto an aqueous surface. These lipid droplets are able to mediate the production of brown pigments that are morphologically and chemically identical to hemozoin. The partitioning of heme into these SNLDs was examined by employing Nile Red, a lipid specific dye. Soluble ferriprotoporphyrin IX was observed to spontaneously localize to the lipid droplets, partitioning in a pH-dependent manner with an estimated log P of 2.6. Interestingly, the pH profile of heme partitioning closely resembles that of ß-hematin formation. Differential scanning calorimetry and kinetic studies demonstrated that the SNLDs provide a unique environment that promotes hemozoin formation. SNLD-mediated formation of the malaria pigment displayed an activation energy barrier lower than those of individual lipid components. In particular, lipid droplets composed of diglycerides displayed activation barriers lower than those composed of monoglycerides. This difference was attributed to the greater fluidity of these lipids. In conjunction with the known pattern of lipid body proliferation, it is suggested that neutral lipid structures within the digestive vacuole not only are the location of in vivo hemozoin formation but are also essential for the survival of the parasite by functioning as a kinetically competent and site specific mediator for heme detoxification.


Assuntos
Heme/metabolismo , Hemeproteínas/metabolismo , Lipídeos/química , Plasmodium falciparum/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA