Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1214845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829451

RESUMO

The present crisis at hand revolves around the need to enhance plant resilience to various environmental stresses, including abiotic and biotic stresses, to ensure sustainable agriculture and mitigate the impact of climate change on crop production. One such promising approach is the utilization of plant growth-promoting rhizobacteria (PGPR) to mediate plant resilience to these stresses. Plants are constantly exposed to various stress factors, such as drought, salinity, pathogens, and nutrient deficiencies, which can significantly reduce crop yield and quality. The PGPR are beneficial microbes that reside in the rhizosphere of plants and have been shown to positively influence plant growth and stress tolerance through various mechanisms, including nutrient solubilization, phytohormone production, and induction of systemic resistance. The review comprehensively examines the various mechanisms through which PGPR promotes plant resilience, including nutrient acquisition, hormonal regulation, and defense induction, focusing on recent research findings. The advancements made in the field of PGPR-mediated resilience through multi-omics approaches (viz., genomics, transcriptomics, proteomics, and metabolomics) to unravel the intricate interactions between PGPR and plants have been discussed including their molecular pathways involved in stress tolerance. Besides, the review also emphasizes the importance of continued research and implementation of PGPR-based strategies to address the pressing challenges facing global food security including commercialization of PGPR-based bio-formulations for sustainable agricultural.

2.
Plants (Basel) ; 12(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111812

RESUMO

The plant-growth-promoting rhizobacteria (PGPR) in the rhizosphere affect plant growth, health, and productivity, as well as soil-nutrient contents. They are considered a green and eco-friendly technology that will reduce chemical-fertilizer usage, thereby reducing production costs and protecting the environment. Out of 58 bacterial strains isolated in Qassim, Saudi Arabia, four strains were identified by the 16S rRNA as the Streptomyces cinereoruber strain P6-4, Priestia megaterium strain P12, Rossellomorea aquimaris strain P22-2, and Pseudomonas plecoglossicida strain P24. The plant-growth-promoting (PGP) features of the identified bacteria involving inorganic phosphate (P) solubilization, the production of indole acetic acid (IAA), and siderophore secretion were assessed in vitro. Regarding the P solubilization, the previous strains' efficacy reached 37.71%, 52.84%, 94.31%, and 64.20%, respectively. The strains produced considerable amounts of IAA (69.82, 251.70, 236.57, and 101.94 µg/mL) after 4 days of incubation at 30 °C. Furthermore, the rates of siderophore production reached 35.51, 26.37, 26.37, and 23.84 psu, respectively, in the same strains. The application of the selected strains in the presence of rock phosphate (RP) with tomato plants under greenhouse conditions was evaluated. The plant growth and P-uptake traits positively and significantly increased in response to all the bacterial treatments, except for some traits, such as plant height, number of leaves, and leaf DM at 21 DAT, compared to the negative control (rock phosphate, T2). Notably, the P. megaterium strain P12 (T4), followed by R. aquimaris strain P22-2 (T5), revealed the best values related to plant height (at 45 DAT), number of leaves per plant (at 45 DAT), root length, leaf area, leaf-P uptake, stem P uptake, and total plant P uptake compared to the rock phosphate. The first two components of the PCA (principal component analysis) represented 71.99% (PCA1 = 50.81% and PCA2 = 21.18%) of the variation at 45 DAT. Finally, the PGPR improved the vegetative-growth traits of the tomato plants through P solubilization, IAA, and siderophore production, and ameliorated the availability of nutrients. Thus, applying in PGPR in sustainable agriculture will potentially reduce production costs and protect the environment from contamination by chemical fertilizers and pesticides.

3.
Plants (Basel) ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501356

RESUMO

The genus Streptomyces is the most abundant and essential microbes in the soil microbial community. Streptomyces are familiar and have great potential to produce a large variety of bioactive compounds. This genus considers an efficient biofertilizer based on its plant growth-promoting activities. Based on their ability to produce a wide varieties of bioactive molecules, the present study aimed to explore the potential plant growth promotion of four Streptomyces strains and their role in enhancing cucumber growth and yield under greenhouse conditions. Streptomyces sp. strain HM2, Streptomyces thinghirensis strain HM3, Streptomyces sp. strain HM8, and Streptomyces tricolor strain HM10 were chosen for the current study. Plant growth-promoting (PGP) features, i.e., indole acetic acid (IAA) production, siderophore excretion, and solubilizing phosphate, were evaluated in vitro. All four strains produced IAA, siderophore, and immobilized inorganic phosphate. Following 4 days of incubation at 30 °C, strains HM2, HM3, HM8, and HM10 produced copious amounts of IAA (18, 22, 62, and 146 µg/mL, respectively) and siderophores (42.59, 40.01, 16.84, 64.14% SU, respectively). At the same time, P solubilization efficacy scored 64.3%, 84.4%, 57.2%, and 81.6% with the same frequency. During in planta evaluation, selected Streptomyces strains combined with rock phosphate were assessed as biofertilizers on the growth and yield of cucumber plants. Under all treatments, positive and significant differences in studied traits were manifested except dry stem matter (SDM), net assimilation rate (NAR), relative growth rate (RGR), and fruit firmness (FF). Treatment T4 (rock phosphate + strain HM3) followed by T5 (rock phosphate + strain HM8) revealed the best results for plant height (PH), number of leaves per plant (NLPP), root length (RL), number of fruits per plant (NFPP), fruit length (FL), fruit diameter (FD), fruit fresh weight per plant (FFWPP), soil P (SP) after 21 DAT, and soil P at the end of the experiment. Notably, T6 (rock phosphate + strain HM10) caused a considerable increase in leaf area (LA). Plant growth-promoting bacteria enhance plant growth and yield through phosphorus solubilizing, improve nutrient availability, produce phytohormones, and support plant growth under abiotic stress. These features are important for sustainable agriculture and reducing environmental pollution with chemical fertilizers and pesticides.

4.
Planta ; 257(2): 27, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583789

RESUMO

MAIN CONCLUSION: This review is an effort to provide in-depth knowledge of microbe's interaction and its role in crop microbiome using combination of advanced molecular and OMICS technology to translate this information for the sustenance of agriculture. Increasing population, climate change and exhaustive agricultural practices either influenced nutrient inputs of soil or generating biological and physico-chemical deterioration of the soils and affecting the agricultural productivity and agro-ecosystems. Alarming concerns toward food security and crop production claim for renewed attention in microbe-based farming practices. Microbes are omnipresent (soil, water, and air) and their close association with plants would help to accomplish sustainable agriculture goals. In the last few decades, the search for beneficial microbes in crop production, soil fertilization, disease management, and plant growth promotion is the thirst for eco-friendly agriculture. The crop microbiome opens new paths to utilize beneficial microbes and manage pathogenic microbes through integrated advanced biotechnology. The crop microbiome helps plants acquire nutrients, growth, resilience against phytopathogens, and tolerance to abiotic stresses, such as heat, drought, and salinity. Despite the emergent functionality of the crop microbiome as a complicated constituent of the plant fitness, our understanding of how the functionality of microbiome influenced by numerous factors including genotype of host, climatic conditions, mobilization of minerals, soil composition, nutrient availability, interaction between nexus of microbes, and interactions with other external microbiomes is partially understood. However, the structure, composition, dynamics, and functional contribution of such cultured and uncultured crop microbiome are least explored. The advanced biotechnological approaches are efficient tools for acquiring the information required to investigate the microbiome and extract data to develop high yield producing and resistant variety crops. This knowledge fills the fundamental gap between the theoretical concepts and the operational use of these advanced tools in crop microbiome studies. Here, we review (1) structure and composition of crop microbiome, (2) microbiome-mediated role associated with crops fitness, (3) Molecular and -omics techniques for exploration of crop microbiome, and (4) current approaches and future prospectives of crop microbiome and its exploitation for sustainable agriculture. Recent -omic approaches are influential tool for mapping, monitoring, modeling, and management of crops microbiome. Identification of crop microbiome, using system biology and rhizho-engineering, can help to develop future bioformulations for disease management, reclamation of stressed agro-ecosystems, and improved productivity of crops. Nano-system approaches combined with triggering molecules of crop microbiome can help in designing of nano-biofertilizers and nano-biopesticides. This combination has numerous merits over the traditional bioinoculants. They stimulate various defense mechanisms in plants facing stress conditions; provide bioavailability of nutrients in the soil, helps mitigate stress conditions; and enhance chances of crops establishment.


Assuntos
Agricultura , Microbiota , Agricultura/métodos , Produtos Agrícolas , Solo/química , Sustento , Microbiologia do Solo
5.
Biomed Chromatogr ; 35(8): e5126, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33772827

RESUMO

Triazole fungicides may potentially harm human health. The 'quick, easy, cheap, effective, rugged, and safe' approach has become popular for extraction and cleanup during pesticide residue analysis. We aimed to (a) validate a method for the simultaneous determination of myclobutanil, penconazole, tebuconazole, and triadimenol in squash using LC-MS/MS and (b) determine the pre-harvest intervals (PHIs) and assess the related risk of consuming squash cultivated under open-field conditions in Saudi Arabia. Using acetonitrile as the extraction solvent and fourfold dilution in deionized water led to weak signal suppression (<-6.1%). The limits of quantitation ranged from 10 to 40 µg/kg. Mean recovery and relative standard deviation ranged from 81.7 to 96.3% and from 3.6 to 11.4%. The half-lives ranged from 2.22 to 3.83 days, and the dissipation followed first-order kinetics. The terminal residues of myclobutanil, penconazole, tebuconazole, and triadimenol were <0.771, <0.307, <0.459, and <0.954 mg/kg, respectively, 7 days after two or three applications of recommended dosages. The PHIs of 7.1-11.4, 8.7-13.1, 3.8-5.3, and 11.3-14.3 days are suggested after the application of the recommended dose and double the recommended dose. A consumer risk assessment based on estimated dietary intake indicated that the consumption of squash treated with the recommended doses does not pose a significant health risk.


Assuntos
Cucurbita/química , Fungicidas Industriais/análise , Resíduos de Praguicidas/análise , Triazóis/análise , Agricultura , Cromatografia Líquida , Cinética , Modelos Lineares , Reprodutibilidade dos Testes , Medição de Risco , Arábia Saudita , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
6.
Int J Syst Evol Microbiol ; 68(11): 3678-3682, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30239331

RESUMO

Potato (Solanum tuberosum) is a very economically important perennial tuberous crop in Saudi Arabia. Potato plants displaying symptoms associated with potato purple top disease, such as aerial tubers and purple and small leaves, were observed in Al-Bukairiyah, Fowlq and Buraydah, Al-Tarafiyah, Qassim governorate, Saudi Arabia. In this study, we examined samples taken from 12 symptomatic potato plants and confirmed the presence of phytoplasma DNA. Analysis of the 16S rRNA-encoding sequences revealed that the symptomatic plants were infected with phytoplasma belonging to the peanut witches'-broom group (16SrII). Sequencing of the 16S rRNA- encoding gene, computer-simulated RFLP analysis and phylogenetic analysis revealed the presence of a novel representative of the 16SrII-X subgroup. The present study identified potato plants as a novel host for novel phytoplasma strains belonging to the pigeon pea witches'-broom group in Saudi Arabia.


Assuntos
Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Phytoplasma/genética , Phytoplasma/isolamento & purificação , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Arábia Saudita , Análise de Sequência de DNA
7.
Int J Syst Evol Microbiol ; 68(2): 518-522, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29303692

RESUMO

Chicory (Cichorium intybus) is a perennial plant (Asteraceae) that grows wild in pasture fields in Saudi Arabia. Chicory plants displaying symptoms typically induced by phytoplasmas, such as bushy phenotype and stunt, were observed in the Mulayda region, Qassim governorate, Saudi Arabia. In this study we examined samples taken from three symptomatic chicory plants and confirmed the presence of phytoplasma DNA. Analysis of the 16S rRNA-encoding sequences showed that the plants were infected with a phytoplasma from the pigeon pea witches'-broom group (16SrIX). Sequencing of the 16S rRNA-encoding gene and the partial cpn60 sequence, computer-simulated RFLP analysis, and phylogenetic analysis of both markers revealed that the phytoplasma identified was representative of a new 16SrIX-J and cpn60 UT IX-IJ subgroup. The present study identified chicory plants as a novel host for phytoplasma strains within the pigeon pea witches'-broom phytoplasma group, and expanded the known diversity of this group.


Assuntos
Cichorium intybus/microbiologia , Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Phytoplasma/genética , Phytoplasma/isolamento & purificação , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Arábia Saudita , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...