Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 9(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835146

RESUMO

Dual vaccines (n = 6) against both lumpy skin disease (LSD) and bovine ephemeral fever (BEF) were constructed, based on the BEFV glycoprotein (G) gene, with or without the BEFV matrix (M) protein gene, inserted into one of two different LSDV backbones, nLSDV∆SOD-UCT or nLSDVSODis-UCT. The inserted gene cassettes were confirmed by PCR; and BEFV protein was shown to be expressed by immunofluorescence. The candidate dual vaccines were initially tested in a rabbit model; neutralization assays using the South African BEFV vaccine (B-Phemeral) strain showed an African consensus G protein gene (Gb) to give superior neutralization compared to the Australian (Ga) gene. The two LSDV backbones expressing both Gb and M BEFV genes were tested in cattle and shown to elicit neutralizing responses to LSDV as well as BEFV after two inoculations 4 weeks apart. The vaccines were safe in cattle and all vaccinated animals were protected against virulent LSDV challenge, unlike a group of control naïve animals, which developed clinical LSD. Both neutralizing and T cell responses to LSDV were stimulated upon challenge. After two inoculations, all vaccinated animals produced BEFV neutralizing antibodies ≥ 1/20, which is considered protective for BEF.

2.
Vaccines (Basel) ; 8(4)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171875

RESUMO

Lumpy skin disease is an important economic disease of cattle that is controlled by vaccination. This paper presents an investigation into the role of the lumpy skin disease virus (LSDV) superoxide dismutase (SOD) homologue on growth and histopathology of the virus both in vitro and in vivo. SOD homologue knock-out and knock-in recombinants (nLSDV∆SOD-UCT and nLSDVSODis-UCT, respectively) were constructed and compared to the Neethling vaccine (nLSDV) for growth in a permissive bovine cell line as well as on fertilized chick chorioallantoic membranes (CAMs). The infected CAMs were scored for histological changes. Deletion of the SOD homologue from LSDV reduced virus growth both in Madin-Darby bovine kidney (MDBK) cells as well as on CAMs. Furthermore, the knockout virus showed reduced inflammation in CAMs and more ballooning degeneration. A pilot experiment was performed in cattle to compare the lesions produced by the different LSDV constructs in the same animal. One animal developed a larger lesion to nLSDV∆SOD-UCT compared to both nLSDVSODis-UCT and nLSDV. Histological analysis of biopsies of these lesions shows less inflammation and necrosis associated with nLSDVSODis-UCT compared to nLSDV and nLSDV∆SOD-UCT. None of the vaccinated animals showed disseminated LSDV disease, indicating that the candidate vaccines are safe for further testing. Our results suggest that the SOD homologue may improve immunogenicity and reduce virulence.

3.
Arch Virol ; 165(5): 1207-1210, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32140837

RESUMO

Bovine ephemeral fever virus (BEFV) is an economically important arbovirus affecting cattle and water buffalo. Currently, isolates can be separated into three phylogenetic groups, differentiated by the place of isolation, namely, East Asia, Australia, and the Middle East. BEFV surface glycoprotein (G) genes from 14 South African field strains collected between 1968 and 1999 were sequenced and compared to 154 published sequences. The BEFV isolates from South Africa were found to be phylogenetically distinct from those from other parts of the world.


Assuntos
Vírus da Febre Efêmera Bovina/classificação , Vírus da Febre Efêmera Bovina/isolamento & purificação , Febre Efêmera/virologia , Variação Genética , Glicoproteínas/genética , Filogenia , Proteínas Virais/genética , Animais , Bovinos , Vírus da Febre Efêmera Bovina/genética , África do Sul
4.
J Virol Methods ; 275: 113752, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654683

RESUMO

Bovine viral diarrhea virus (BVDV) is a common contaminant of Madin-Darby bovine kidney (MDBK) cells as well as fetal calf serum (FCS). It is pathogenic to cattle and regulatory authorities require that veterinary vaccine stocks are free from BVDV. MDBK cells are used in the generation of recombinant lumpy skin disease virus (LSDV) and have been used for the growth of LSDV vaccines. This paper describes how vaccine stocks can be cleared of BVDV by passage through an avian host, nonpermissive to BVDV, but permissive to LSDV. LSDV vaccine stocks were shown to be cleared of BVDV after passage on the chorioallantoic membranes (CAMs) of fertilized 7-day old hens' eggs. Vaccines were passaged a second time on CAMs before being grown in primary lamb testes (LT) cells. Vaccines retained BVDV-negative status after passage on LT cells.


Assuntos
Membrana Corioalantoide/virologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Vírus da Doença Nodular Cutânea , Óvulo/citologia , Vacinas Virais/análise , Cultura de Vírus/métodos , Animais , Bovinos , Linhagem Celular , Galinhas , Feminino , Fertilização , Rim/citologia , Rim/virologia , Óvulo/virologia , Soroalbumina Bovina , Vacinas Virais/normas
5.
Arch Virol ; 164(12): 3107-3109, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31529221

RESUMO

The lumpy skin disease virus (LSDV) vaccine, Herbivac LS, batch 008, was sequenced and found to differ from the Neethling vaccine strain in the locus encoding a superoxide dismutase (SOD) homolog. The presence of a SOD homolog, be it full-length (as in Herbivac LS) or truncated (as in Neethling) may affect vaccine immunogenicity.


Assuntos
Vírus da Doença Nodular Cutânea/genética , Superóxido Dismutase/genética , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Tamanho do Genoma , Vírus da Doença Nodular Cutânea/classificação , Vírus da Doença Nodular Cutânea/enzimologia , Mutação , Proteínas Virais/genética , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...