Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 118, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733165

RESUMO

BACKGROUND: It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS: The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS: Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.

2.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37513855

RESUMO

Curcumin is a polyphenolic compound, derived from Curcuma longa, and it has several pharmacological effects such as antioxidant, anti-inflammatory, and antitumor. Although it is a pleiotropic molecule, curcumin's free form, which is lipophilic, has low bioavailability and is rapidly metabolized, limiting its clinical use. With the advances in techniques for loading curcumin into nanostructures, it is possible to improve its bioavailability and extend its applications. In this review, we gather evidence about the comparison of the pharmacokinetics (biodistribution and bioavailability) between free curcumin (Cur) and nanostructured curcumin (Cur-NPs) and their respective relationships with antitumor efficacy. The search was performed in the following databases: Cochrane, LILACS, Embase, MEDLINE/Pubmed, Clinical Trials, BSV regional portal, ScienceDirect, Scopus, and Web of Science. The selected studies were based on studies that used High-Performance Liquid Chromatography (HPLC) as the pharmacokinetics evaluation method. Of the 345 studies initially pooled, 11 met the inclusion criteria and all included studies classified as high quality. In this search, a variety of nanoparticles used to deliver curcumin (polymeric, copolymeric, nanocrystals, nanovesicles, and nanosuspension) were found. Most Cur-NPs presented negative Zeta potential ranging from -25 mV to 12.7 mV, polydispersion index (PDI) ranging from 0.06 to 0.283, and hydrodynamic diameter ranging from 30.47 to 550.1 nm. Selected studies adopted mainly oral and intravenous administrations. In the pharmacokinetics analysis, samples of plasma, liver, tumor, lung, brain, kidney, and spleen were evaluated. The administration of curcumin, in nanoparticle systems, resulted in a higher level of curcumin in tumors compared to free curcumin, leading to an improved antitumor effect. Thus, the use of nanoparticles can be a promising alternative for curcumin delivery since this improves its bioavailability.

3.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275996

RESUMO

Disorders in the inflammatory process underlie the pathogenesis of numerous diseases. The utilization of natural products as anti-inflammatory agents is a well-established approach in both traditional medicine and scientific research, with studies consistently demonstrating their efficacy in managing inflammatory conditions. Pequi oil, derived from Caryocar brasiliense, is a rich source of bioactive compounds including fatty acids and carotenoids, which exhibit immunomodulatory potential. This systematic review aims to comprehensively summarize the scientific evidence regarding the anti-inflammatory activity of pequi oil. Extensive literature searches were conducted across prominent databases (Scopus, BVS, CINAHL, Cochrane, LILACS, Embase, MEDLINE, ProQuest, PubMed, FSTA, ScienceDirect, and Web of Science). Studies evaluating the immunomodulatory activity of crude pequi oil using in vitro, in vivo models, or clinical trials were included. Out of the 438 articles identified, 10 met the stringent inclusion criteria. These studies collectively elucidate the potential of pequi oil to modulate gene expression, regulate circulating levels of pro- and anti-inflammatory mediators, and mitigate oxidative stress, immune cell migration, and cardinal signs of inflammation. Moreover, negligible to no toxicity of pequi oil was observed across the diverse evaluated models. Notably, variations in the chemical profile of the oil were noted, depending on the extraction methodology and geographical origin. This systematic review strongly supports the utility of pequi oil in controlling the inflammatory process. However, further comparative studies involving oils obtained via different methods and sourced from various regions are warranted to reinforce our understanding of its effectiveness and safety.

4.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500883

RESUMO

Pequi oil (Caryocar brasiliense) contains bioactive compounds capable of modulating the inflammatory process; however, its hydrophobic characteristic limits its therapeutic use. The encapsulation of pequi oil in nanoemulsions can improve its biodistribution and promote its immunomodulatory effects. Thus, the objective of the present study was to formulate pequi oil-based nanoemulsions (PeNE) to evaluate their biocompatibility, anti-inflammatory, and antinociceptive effects in in vitro (macrophages­J774.16) and in vivo (Rattus novergicus) models. PeNE were biocompatible, showed no cytotoxic and genotoxic effects and no changes in body weight, biochemistry, or histology of treated animals at all concentrations tested (90−360 µg/mL for 24 h, in vitro; 100−400 mg/kg p.o. 15 days, in vivo). It was possible to observe antinociceptive effects in a dose-dependent manner in the animals treated with PeNE, with a reduction of 27 and 40% in the doses of 100 and 400 mg/kg of PeNE, respectively (p < 0.05); however, the treatment with PeNE did not induce edema reduction in animals with carrageenan-induced edema. Thus, the promising results of this study point to the use of free and nanostructured pequi oil as a possible future approach to a preventive/therapeutic complementary treatment alongside existing conventional therapies for analgesia.

5.
Biomed Pharmacother ; 153: 113348, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35820315

RESUMO

Pequi oil is extracted from the fruit of a Brazilian native plant (Caryocar brasiliense Camb) that contains some molecules with anticancer potential. Due to its hydrophobic property, the administration of pequi oil associated with nanoemulsion systems represents a successful strategy to improve oil bioavailability. Breast cancer is the most frequent type of cancer among women and conventional therapies used are frequently associated with several side effects. Thus, the aim of this study was to investigate the effects of pequi oil-based nanoemulsion (PeNE) on triple-negative breast cancer cells (4T1), in vitro. PeNE presented a dose- and time-dependent cytotoxic effect with lower IC50 than free pequi oil after 48 h of exposure (p < 0.001). At 180 µg/mL, PeNE demonstrated numerous cell alterations, when compared to free pequi oil, such as morphological alterations, reduction in cell proliferation and total cell number, damage to plasmatic membrane, induction of lysosomal membrane permeability and depolarization of mitochondrial membrane, alteration of intracellular ROS production and calcium level, and increase in phosphatidylserine exposure. Taken together, the results suggest an interesting induction of cell death mechanisms involving a combined action of factors that impair nucleus, mitochondria, lysosome, and ER function. In addition, more pronounced effects were observed in cells treated by PeNE at 180 µg/mL when compared to free pequi oil, thereby reinforcing the advantages of using nanometric platforms. These promising results highlight the use of PeNE as a potential complementary therapeutic approach to be employed along with conventional treatments against breast cancer in the future.


Assuntos
Ericales , Malpighiales , Neoplasias de Mama Triplo Negativas , Proliferação de Células , Ericales/química , Feminino , Humanos , Organelas , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
6.
Front Oncol ; 11: 612903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767985

RESUMO

Breast cancer is one of the most prevalent types of malignant tumors in the world, resulting in a high incidence of death. The development of new molecules and technologies aiming to apply more effective and safer therapy strategies has been intensively explored to overcome this situation. The association of nanoparticles with known antitumor compounds (including plant-derived molecules such as curcumin) has been considered an effective approach to enhance tumor growth suppression and reduce adverse effects. Therefore, the objective of this systematic review was to summarize published data regarding evaluations about efficacy and toxicity of curcumin nanoparticles (Cur-NPs) in in vivo models of breast cancer. The search was carried out in the databases: CINAHL, Cochrane, LILACS, Embase, FSTA, MEDLINE, ProQuest, BSV regional portal, PubMed, ScienceDirect, Scopus, and Web of Science. Studies that evaluated tumor growth in in vivo models of breast cancer and showed outcomes related to Cur-NP treatment (without association with other antitumor molecules) were included. Of the 528 initially gathered studies, 26 met the inclusion criteria. These studies showed that a wide variety of NP platforms have been used to deliver curcumin (e.g., micelles, polymeric, lipid-based, metallic). Attachment of poly(ethylene glycol) chains (PEG) and active targeting moieties were also evaluated. Cur-NPs significantly reduced tumor volume/weight, inhibited cancer cell proliferation, and increased tumor apoptosis and necrosis. Decreases in cancer stem cell population and angiogenesis were also reported. All the studies that evaluated toxicity considered Cur-NP treatment to be safe regarding hematological/biochemical markers, damage to major organs, and/or weight loss. These effects were observed in different in vivo models of breast cancer (e.g., estrogen receptor-positive, triple-negative, chemically induced) showing better outcomes when compared to treatments with free curcumin or negative controls. This systematic review supports the proposal that Cur-NP is an effective and safe therapeutic approach in in vivo models of breast cancer, reinforcing the currently available evidence that it should be further analyzed in clinical trials for breast cancer treatments.

7.
Exp Dermatol ; 30(5): 710-716, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33523510

RESUMO

Combined 5-fluorouracil (5-FU) and melittin (MEL) is believed to enhance cytotoxic effects on skin squamous cell carcinoma (SCC). However, the rationale underlying cytotoxicity is fundamentally important for a proper design of combination chemotherapy, and to provide translational insights for future therapeutics in the dermatology field. The aim was to elucidate the effects of 5-FU/MEL combination on the viability, proliferation and key structures of human squamous cell carcinoma (A431). Morphology, plasma membrane, DNA, mitochondria, oxidative stress, cell viability, proliferation and cell death pathways were targeted for investigation by microscopy, MTT, trypan blue assay, flow cytometry and real-time cell analysis. 5-FU/MEL (0.25 µM/0.52 µM) enhanced the cytotoxic effect in A431 cells (74.46%, p < .001) after 72 h exposure, showing greater cytotoxic effect when compared to each isolated compound (45.55% 5-FU and 61.78% MEL). The results suggest that MEL induces plasma membrane alterations that culminate in a loss of integrity at subsequent times, sensitizing the cell to 5-FU action. DNA fragmentation, S and G2/M arrest, disruption of mitochondrial metabolism, and alterations in cell morphology culminated in proliferation blockage and apoptosis. 5-FU/MEL combination design optimizes the cytotoxic effects of each drug at lower concentrations, which may represent an innovative strategy for SCC therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Fluoruracila/farmacologia , Meliteno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Resultado do Tratamento , Regulação para Cima
8.
Arch Pharm (Weinheim) ; 353(11): e2000151, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32686134

RESUMO

New drugs are constantly in demand, and nature's biodiversity is a rich source of new compounds for therapeutic applications. Synthetic peptides based on the transcriptome analysis of scorpion venoms of Tityus obscurus, Opisthacanthus cayaporum, and Hadrurus gertschi were assayed for their cytotoxic and antiretroviral activity. The Tityus obscurus scorpion-derived synthetic peptide (FFGTLFKLGSKLIPGVMKLFSKKKER), in concentrations ranging from 6.24 to 0.39 µM, proved to be the most active one against simian immunodeficiency virus (SIV) replication in the HUT-78 cell line and in primary human leukocytes, with the lowest toxicity for these cells. The immune cellular response evaluated in primary human leukocytes treated with the most promising peptide and challenged with SIV infection exhibited production of cytokines such as interleukin (IL)-4, IL-6, IL-8, IL-10, and interferon-γ, which could be involved in cell defense mechanisms to overcome viral infection through proinflammatory and anti-inflammatory pathways, similar to those evoked for triggering the mechanisms exerted by antiviral restriction factors.


Assuntos
Antirretrovirais/farmacologia , Leucócitos/efeitos dos fármacos , Peptídeos/farmacologia , Venenos de Escorpião/farmacologia , Escorpiões/metabolismo , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antirretrovirais/síntese química , Antirretrovirais/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Leucócitos/virologia , Peptídeos/síntese química , Peptídeos/toxicidade , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Venenos de Escorpião/toxicidade , Escorpiões/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/imunologia , Transcriptoma
9.
J Mater Chem B ; 7(41): 6390-6398, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31642844

RESUMO

The aim of this work was to develop and test the in vitro biological activity of nanocapsules loaded with a doxorubicin (DOX) free base dissolved in a core of castor oil shelled by poly(methyl vinyl ether-co-maleic anhydride) conjugated to n-octadecylamine residues. This system was stable and monodisperse, with a hydrodynamic diameter of about 300 nm. These nanocapsules changed the intracellular distribution of DOX, from the nuclei to the cytoplasm, and exhibited higher toxicity towards cancer cells - 4T1 and MCF-7 - and significantly lower toxicity towards normal cells - NIH-3T3 and MCF-10A - in vitro. In conclusion, these nanocapsules are suitable DOX carriers, which remain to be studied in in vivo tumor models.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/metabolismo , Portadores de Fármacos/química , Nanocápsulas/química , Animais , Neoplasias da Mama/patologia , Óleo de Rícino , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular , Citoplasma , Doxorrubicina/toxicidade , Portadores de Fármacos/normas , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3
10.
Int J Mol Sci ; 19(6)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921756

RESUMO

Schistosomiasis, caused by helminth flatworms of the genus Schistosoma, is an infectious disease mainly associated with poverty that affects millions of people worldwide. Since treatment for this disease relies only on the use of praziquantel, there is an urgent need to identify new antischistosomal drugs. Piplartine is an amide alkaloid found in several Piper species (Piperaceae) that exhibits antischistosomal properties. The aim of this study was to evaluate the structure­function relationship between piplartine and its five synthetic analogues (19A, 1G, 1M, 14B and 6B) against Schistosoma mansoni adult worms, as well as its cytotoxicity to mammalian cells using murine fibroblast (NIH-3T3) and BALB/cN macrophage (J774A.1) cell lines. In addition, density functional theory calculations and in silico analysis were used to predict physicochemical and toxicity parameters. Bioassays revealed that piplartine is active against S. mansoni at low concentrations (5⁻10 µM), but its analogues did not. In contrast, based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, piplartine exhibited toxicity in mammalian cells at 785 µM, while its analogues 19A and 6B did not reduce cell viability at the same concentrations. This study demonstrated that piplartine analogues showed less activity against S. mansoni but presented lower toxicity than piplartine.


Assuntos
Anti-Helmínticos/farmacologia , Piperidonas/farmacologia , Extratos Vegetais/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Células 3T3 , Animais , Anti-Helmínticos/química , Anti-Helmínticos/toxicidade , Cricetinae , Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Piper/química , Piperidonas/química , Piperidonas/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Relação Quantitativa Estrutura-Atividade , Caramujos
11.
Food Res Int ; 105: 184-196, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433206

RESUMO

This study investigated a lycopene-rich extract from red guava (LEG) for its chemical composition using spectrophotometry, mass spectrometry, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and computational studies. The cytotoxic activity of LEG and the underlying mechanism was studied in human breast adenocarcinoma cells (MCF-7), murine fibroblast cells (NIH-3T3), BALB/c murine peritoneal macrophages, and sheep blood erythrocytes by evaluating the cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and flow cytometry. Spectrophotometry analysis showed that LEG contained 20% of lycopene per extract dry weight. Experimental and theoretical ATR-FTIR suggests the presence of lycopene, whereas MS/MS spectra obtained after fragmentation of the molecular ion [M]+• of 536.4364 show fragment ions at m/z 269.2259, 375.3034, 444.3788, and 467.3658, corroborating the presence of lycopene mostly related to all-trans configuration. Treatment with LEG (1600 to 6.25µg/mL) for 24 and 72h significantly affected the viability of MCF-7 cells (mean half maximal inhibitory concentration [IC50]=29.85 and 5.964µg/mL, respectively) but not NIH-3T3 cells (IC50=1579 and 911.5µg/mL, respectively). Furthermore LEG at concentrations from 800 to 6.25µg/mL presented low cytotoxicity against BALB/c peritoneal macrophages (IC50≥800µg/mL) and no hemolytic activity. LEG (400 and 800µg/mL) caused reduction in the cell proliferation and induced cell cycle arrest, DNA fragmentation, modifications in the mitochondrial membrane potential, and morphologic changes related to granularity and size in MCF-7 cells; however, it failed to cause any significant damage to the cell membrane or display necrosis or traditional apoptosis. In conclusion, LEG was able to induce cytostatic and cytotoxic effects on breast cancer cells probably via induction of an apoptotic-like pathway.


Assuntos
Apoptose/efeitos dos fármacos , Licopeno/análise , Licopeno/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Psidium/química , Animais , Ciclo Celular/efeitos dos fármacos , Membrana Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
12.
Free Radic Biol Med ; 115: 68-79, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162516

RESUMO

The amphibian skin plays an important role protecting the organism from external harmful factors such as microorganisms or UV radiation. Based on biorational strategies, many studies have investigated the cutaneous secretion of anurans as a source of bioactive molecules. By a peptidomic approach, a novel antioxidant peptide (AOP) with in vitro free radical scavenging ability was isolated from Physalaemus nattereri. The AOP, named antioxidin-I, has a molecular weight [M+H]+ = 1543.69Da and a TWYFITPYIPDK primary amino acid sequence. The gene encoding the antioxidin-I precursor was expressed in the skin tissue of three other Tropical frog species: Phyllomedusa tarsius, P. distincta and Pithecopus rohdei. cDNA sequencing revealed highly homologous regions (signal peptide and acidic region). Mature antioxidin-I has a novel primary sequence with low similarity compared with previously described amphibian's AOPs. Antioxidin-I adopts a random structure even at high concentrations of hydrophobic solvent, it has poor antimicrobial activity and poor performance in free radical scavenging assays in vitro, with the exception of the ORAC assay. However, antioxidin-I presented a low cytotoxicity and suppressed menadione-induced redox imbalance when tested with fibroblast in culture. In addition, it had the capacity to substantially attenuate the hypoxia-induced production of reactive oxygen species when tested in hypoxia exposed living microglial cells, suggesting a potential neuroprotective role for this peptide.


Assuntos
Proteínas de Anfíbios/genética , Peptídeos Catiônicos Antimicrobianos/genética , Anuros/fisiologia , Infecções Bacterianas/imunologia , Fibroblastos/fisiologia , Microglia/metabolismo , Pele/metabolismo , Proteínas de Anfíbios/imunologia , Proteínas de Anfíbios/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Antioxidantes/metabolismo , Clonagem Molecular , Sequestradores de Radicais Livres/metabolismo , Camundongos , Estrutura Molecular , Células NIH 3T3 , Neuroproteção , Oxirredução , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
13.
Artif Cells Nanomed Biotechnol ; 46(8): 2002-2012, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29179603

RESUMO

Nanocapsules (NCS-DOX) with an oily core of selol and a shell of poly(methyl vinyl ether-co-maleic anhydride) covalently conjugated to doxorubicin were developed. These nanocapsules are spherical, with an average hydrodynamic diameter of about 170 nm, and with negative zeta potential. NCS-DOX effectively co-delivered the selol and the doxorubicin into 4T1 cells and changed the intracellular distribution of DOX from the nuclei to the mitochondria. Moreover, a significantly increased cytotoxicity against 4T1 cells was observed, which is suggestive of additive or synergic effect of selol and doxorubicin. In conclusion, PVM/MA nanocapsules are suitable platforms to co-deliver drugs into cancer cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Doxorrubicina , Neoplasias Mamárias Animais/tratamento farmacológico , Nanocápsulas , Compostos de Selênio , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células NIH 3T3 , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Compostos de Selênio/química , Compostos de Selênio/farmacocinética , Compostos de Selênio/farmacologia
14.
J Antibiot (Tokyo) ; 70(2): 122-129, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27381521

RESUMO

Enterobacter cloacae is a Gram-negative bacterium associated with high morbidity and mortality in intensive care patients due to its resistance to multiple antibiotics. Currently, therapy against multi-resistant bacteria consists of using colistin, in spite of its toxic effects at higher concentrations. In this context, colistin-resistant E. cloacae strains were challenged with lower levels of colistin combined with other antibiotics to reduce colistin-associated side effects. Colistin-resistant E. cloacae (ATCC 49141) strains were generated by serial propagation in subinhibitory colistin concentrations. After this, three colistin-resistant and three nonresistant replicates were isolated. The identity of all the strains was confirmed by MALDI-TOF MS, VITEK 2 and MicroScan analysis. Furthermore, cross-resistance to other antibiotics was checked by disk diffusion and automated systems. The synergistic effects of the combined use of colistin and chloramphenicol were observed via the broth microdilution checkerboard method. First, data here reported showed that all strains presented intrinsic resistance to penicillin, cephalosporin (except fourth generation), monobactam, and some associations of penicillin and ß-lactamase inhibitors. Moreover, a chloramphenicol and colistin combination was capable of inhibiting the induced colistin-resistant strains as well as two colistin-resistant clinical strains. Furthermore, no cytotoxic effect was observed by using such concentrations. In summary, the data reported here showed for the first time the possible therapeutic use of colistin-chloramphenicol for infections caused by colistin-resistant E. cloacae.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Enterobacter cloacae/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , RNA Bacteriano
15.
Carbohydr Polym ; 157: 567-575, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987963

RESUMO

Chemical modifications to cashew gum (CG) structure have been previously reported to obtain new physicochemical characteristics, however until now there were no reports of modifications by introduction of new functional groups to add cationic character. This study presents a quaternization route for CG using a quaternary ammonium reagent. The chemical features of the quaternized cashew gum derivatives (QCG) were analyzed by: FTIR, elemental analysis, degree of substitution, Zeta potential, 1H NMR and 1H-13C correlation (HSQC). QCG were evaluated for their anti-staphylococcal activity by determining minimum inhibitory and bactericidal concentrations against pathogenic Staphylococcus spp. and by imaging using atomic force microscopy. Moreover, the mammalian cell biocompatibility were also assessed through hemolytic and cell toxicity assays. QCG presented promising antimicrobial activity against methicillin-resistant S. aureus and biocompatibility on tested cells. These results show that QCG could be a promising tool in the development of biomaterials with an anti-septic action.


Assuntos
Anacardium/química , Antibacterianos/química , Gomas Vegetais/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Eritrócitos/efeitos dos fármacos , Hemólise , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Polímeros , Staphylococcus/efeitos dos fármacos
16.
Int J Nanomedicine ; 9: 5055-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25382976

RESUMO

Controlling human pathogenic bacteria is a worldwide problem due to increasing bacterial resistance. This has prompted a number of studies investigating peptides isolated from marine animals as a possible alternative for control of human pathogen infections. Clavanins are antimicrobial peptides isolated from the marine tunicate Styela clava, showing 23 amino acid residues in length, cationic properties, and also high bactericidal activity. In spite of clear benefits from the use of peptides, currently 95% of peptide properties have limited pharmaceutical applicability, such as low solubility and short half-life in the circulatory system. Here, nanobiotechnology was used to encapsulate clavanin A in order to develop nanoantibiotics against bacterial sepsis. Clavanin was nanostructured using EUDRAGIT(®) L 100-55 and RS 30 D solution (3:1 w:w). Atomic force, scanning electron microscopy and dynamic light scattering showed nanoparticles ranging from 120 to 372 nm in diameter, with a zeta potential of -7.16 mV and a polydispersity index of 0.123. Encapsulation rate of 98% was assessed by reversed-phase chromatography. In vitro bioassays showed that the nanostructured clavanin was partially able to control development of Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Furthermore, nanostructures did not show hemolytic activity. In vivo sepsis bioassays were performed using C57BL6 mice strain inoculated with a polymicrobial suspension. Assays led to 100% survival rate under sub-lethal sepsis assays and 40% under lethal sepsis assays in the presence of nanoformulated clavanin A until the seventh day of the experiment. Data here reported indicated that nanostructured clavanin A form shows improved antimicrobial activity and has the potential to be used to treat polymicrobial infections.


Assuntos
Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Bacteriemia/tratamento farmacológico , Proteínas Sanguíneas/administração & dosagem , Metacrilatos/administração & dosagem , Nanopartículas/química , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Bactérias/efeitos dos fármacos , Proteínas Sanguíneas/química , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Metacrilatos/química , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanotecnologia , Urocordados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...