Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 217: 1-10, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219408

RESUMO

Embryonal diapause is a characteristic feature of about 130 mammalian species. However, very few studies have addressed cryopreservation of diapausing embryos. This work is aimed to apply program freezing to blastocysts obtained from CD1 mice, which were at diapause state after ovariectomy and the subsequent hormonal therapy. Blastocysts collected from non-operated mice of the same strain served as controls. Some diapausing as well as non-diapausing frozen-thawed blastocysts demonstrated blastocoel re-expansion after 24 h of in vitro culture (IVC) indicating their viability after cryopreservation. Raman spectroscopy assessment of phenylalanine accumulation revealed that the fraction of new synthesized proteins was lower for non-frozen as well as for frozen-thawed diapausing blastocysts compared to non-diapausing ones. Although protein metabolism was reduced in diapausing embryos, most of the protein synthesis remained active. Cell number increased after 24 h of IVC in non-frozen as well as in the frozen-thawed blastocysts of the control but not of the diapause group. However, cell numbers were increased in frozen-thawed diapausing blastocysts after 47 h of IVC in a medium supplemented with putrescine. This indicates viability of frozen-thawed diapausing embryos after cryopreservation. Besides, protein metabolism was not affected by cryopreservation in diapausing and non-diapausing murine embryos indicating their viability. Our results demonstrated the possibility of successful cryopreservation of diapausing murine embryos.


Assuntos
Blastocisto , Criopreservação , Feminino , Camundongos , Animais , Congelamento , Criopreservação/veterinária , Criopreservação/métodos , Embrião de Mamíferos , Camundongos Endogâmicos , Mamíferos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123262, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607454

RESUMO

Raman spectroscopy of cells cultured in a deuterated substrate is a promising approach to the characterization of mass transfer and enzymatic reactions in living cells. Here, we studied the potential of this approach using the example of yeast cells cultured under aerobic and anaerobic conditions. In our experiments, unadapted to D2O Saccharomyces cerevisiae were cultured in a medium with different concentrations of deuterium oxide and deuterated glucose. It has been shown that the addition of even 10% heavy water leads to a general decrease in the amount of lipids in cells. In the Raman spectra of cells cultured at high concentrations of D2O, additional peaks are found, which are associated with the deuteration of entire chemical groups. We observed a similar effect in the ethanol synthesized by yeast fermentation, the deuteration of which also depends on the concentration of D2O. The results on the characterization of cell deuteration turned out to be in qualitative agreement with the known estimate that aerobic metabolism is 15 times more active than ethanol fermentation. The results of our work determine new limitations and prospects for further application and development of the Raman method of spectroscopy of deuterium tags.


Assuntos
Saccharomyces cerevisiae , Análise Espectral Raman , Etanol , Fermentação , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...