Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Acta Neurochir (Wien) ; 165(5): 1323-1331, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920663

RESUMO

BACKGROUND: Meningiomas are the most common intracranial tumors. Recent advancements in the genetic profiling of tumors have allowed information including DNA copy number analysis, mutational analysis, and RNA sequencing to be more frequently reported, in turn allowing better characterization of meningiomas. In recent years, analysis of tumor methylomes that reflects both cell-origin methylation signatures and somatically acquired DNA methylation changes has been utilized to better classify meningiomas with great success. METHOD: We report DNA methylation profiling on meningiomas from 17 patients. Formalin-fixed paraffin-embedded (FFPE) meningioma tumor samples were processed, loaded onto the Infinium Methylation EPIC array, and scanned using the Illumina IScan system. Raw IDAT files were processed through the the CNS tumor classifier developed by the Molecular Neuropathology group at the German Cancer Research Center (DKFZ). Corresponding genomics were captured using targeted sequencing panels. RESULT: Among the meningioma samples, 13 samples were classified as "benign," two samples as "intermediate," and the remaining three samples (from two patients) as "malignant," based on previously validated classification algorithms. In addition to tumor methylation profiling, we also present information that includes patient demographics, clinical presentations, tumor characteristics (including size and location), surgical approaches, and mutational analysis. The two patients who provided the samples with "malignant" methylation classifications had tumor recurrence, reflecting a more aggressive disease course. CONCLUSION: In accordance with prior reports, our case series provides support that tumor DNA methylation profiling adds meaningful classification information and may be beneficial to incorporate in clinical practice. Our report also reveals that DNA methylation combined with WHO histology classification can more accurately predict tumor behavior than WHO classification alone.


Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico , Meningioma/genética , Metilação de DNA/genética , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética
2.
Commun Med (Lond) ; 1: 33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602196

RESUMO

Background: It is estimated that up to 80% of infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are asymptomatic and asymptomatic patients can still effectively transmit the virus and cause disease. While much of the effort has been placed on decoding single nucleotide variation in SARS-CoV-2 genomes, considerably less is known about their transcript variation and any correlation with clinical severity in human hosts, as defined here by the presence or absence of symptoms. Methods: To assess viral genomic signatures of disease severity, we conducted a systematic characterization of SARS-CoV-2 transcripts and genetic variants in 81 clinical specimens collected from symptomatic and asymptomatic individuals using multi-scale transcriptomic analyses including amplicon-seq, short-read metatranscriptome and long-read Iso-seq. Results: Here we show a highly coordinated and consistent pattern of sgRNA expression from individuals with robust SARS-CoV-2 symptomatic infection and their expression is significantly repressed in the asymptomatic infections. We also observe widespread inter- and intra-patient variants in viral RNAs, known as quasispecies frequently found in many RNA viruses. We identify unique sets of deletions preferentially found primarily in symptomatic individuals, with many likely to confer changes in SARS-CoV-2 virulence and host responses. Moreover, these frequently occurring structural variants in SARS-CoV-2 genomes serve as a mechanism to further induce SARS-CoV-2 proteome complexity. Conclusions: Our results indicate that differential sgRNA expression and structural mutational burden are highly correlated with the clinical severity of SARS-CoV-2 infection. Longitudinally monitoring sgRNA expression and structural diversity could further guide treatment responses, testing strategies, and vaccine development.

3.
Cancer Genet ; 242: 25-34, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31992506

RESUMO

Molecular features of gynecologic cancers have been investigated in comprehensive studies, but correlation of these molecular signatures with clinical significance for precision medicine is yet to be established. Towards this end, we evaluated 95 gynecologic cancer cases submitted for testing using The JAX ActionSeq™ NGS panel. Molecular profiles were studied and compared to TCGA datasets to identify similarities and distinguishing features among subtypes. We identified 146 unique clinically significant variants (Tier I and II) across 45 of the 212 genes (21%), in 87% (83/95) of cases. TP53, PTEN, ARID1A, PIK3CA and ATM were the most commonly mutated genes; CCNE1 and ERBB2 amplifications were the most frequently detected copy-number alterations. PARP inhibitors were among the most commonly reported drug class with clinical trials, consistent with the frequency of DNA damage-response pathway mutations in our cohort. Overall, our study provides additional insight into the molecular profiles of gynecologic cancers, highlighting regulatory pathways involved, raising the potential implications for targeted therapeutic options currently available.


Assuntos
Neoplasias dos Genitais Femininos/genética , Mutação , Guias de Prática Clínica como Assunto , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Ciclo Celular/genética , Estudos de Coortes , Variações do Número de Cópias de DNA , Reparo do DNA/genética , DNA de Neoplasias/genética , Conjuntos de Dados como Assunto , Feminino , Amplificação de Genes , Frequência do Gene , Genes Neoplásicos , Neoplasias dos Genitais Femininos/tratamento farmacológico , Neoplasias dos Genitais Femininos/patologia , Fidelidade a Diretrizes , Humanos , Pessoa de Meia-Idade , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Medicina de Precisão/métodos , Estudos Retrospectivos
4.
J Clin Neurosci ; 71: 311-315, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31859178

RESUMO

The World Health Organization (WHO) has defined more than 130 distinct central nervous system (CNS) tumor entities, of which glioblastoma is the most fatal primary brain tumor. However, the correlation of the molecular signatures of glioblastoma with clinical significance for precision medicine is not well-known. How, and to what extent these variants may affect clinical decision making remains uncertain. Here, we evaluate 48 glioblastomas submitted for testing using the JAX ActionSeq™ Next-generation sequencing (NGS) panel. We identified 131 clinically significant variants (Tier I and II) across 30 of the 212 genes (14%). TP53, EGFR, PTEN, IDH1 were the most commonly mutated genes; EGFR, CDK4 amplifications, and CDKN2A deletion were the most frequently detected copy-number alterations. CDK4/6 and PI3K inhibitors were among the most commonly reported drug class with FDA approved therapies and investigational therapies, which is consistent with the frequencies of these genes in our cohort. Overall, our study established the molecular profiles of glioblastoma based on the 2017 joint consensus guidelines by AMP/ASCO/CAP and provides the potential implications for targeted therapeutic options currently available.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Glioblastoma/genética , Medicina de Precisão/métodos , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Estudos Retrospectivos
5.
Mol Diagn Ther ; 24(1): 103-111, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31754995

RESUMO

OBJECTIVE: The study aimed to retrospectively evaluate the positive yield rate of a custom 212-gene next-generation sequencing (NGS) panel, the JAX ActionSeq™ assay, used in molecular profiling of solid tumors for precision medicine. METHODS: We evaluated 261 cases tested over a 24-month period including cancers across 24 primary tissue types and report on the mutation yield in these cases. RESULTS: Thirty-three of the 261 cases (13%) had no detectable clinically significant variants. In the remaining 228 cases (87%), we identified 550 clinically significant variants in 88 of the 212 genes, with four of fewer clinically significant variants being detected in 62 of 88 genes (70%). TP53 had the highest number of variants (125), followed by APC (47), KRAS (47), ARID1A (20), PIK3CA (20) and EGFR (18). There were 38 tier I and 512 tier II variants, with two genes having only a tier I variant, seven genes having both a tier I and tier II variant, and 79 genes having at least one tier II variant. Overall, the ActionSeq™ assay detected clinically significant variants in 42% of the genes included in the panel (88/212), 68% of which (60/88) were detected in more than one tumor type. CONCLUSIONS: This study demonstrates that of the genes with documented involvement in cancer, only a limited number are currently clinically significant from a therapeutic, diagnostic and/or prognostic perspective.


Assuntos
Biomarcadores Tumorais , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Medicina de Precisão/métodos , Prognóstico , Transcriptoma
6.
Hum Mutat ; 40(11): 2044-2056, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31237724

RESUMO

Lynch syndrome (LS) predisposes patients to cancer and is caused by germline mutations in the DNA mismatch repair (MMR) genes. Identifying the deleterious mutation, such as a frameshift or nonsense mutation, is important for confirming an LS diagnosis. However, discovery of a missense variant is often inconclusive. The effects of these variants of uncertain significance (VUS) on disease pathogenesis are unclear, though understanding their impact on protein function can help determine their significance. Laboratory functional studies performed to date have been limited by their artificial nature. We report here an in-cellulo functional assay in which we engineered site-specific MSH2 VUS using clustered regularly interspaced short palindromic repeats-Cas9 gene editing in human embryonic stem cells. This approach introduces the variant into the endogenous MSH2 loci, while simultaneously eliminating the wild-type gene. We characterized the impact of the variants on cellular MMR functions including DNA damage response signaling and the repair of DNA microsatellites. We classified the MMR functional capability of eight of 10 VUS providing valuable information for determining their likelihood of being bona fide pathogenic LS variants. This human cell-based assay system for functional testing of MMR gene VUS will facilitate the identification of high-risk LS patients.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Edição de Genes , Células-Tronco Embrionárias Humanas/metabolismo , Proteína 2 Homóloga a MutS/genética , Mutação de Sentido Incorreto , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Instabilidade de Microssatélites , Modelos Moleculares , Proteína 2 Homóloga a MutS/química , Conformação Proteica , Transdução de Sinais
7.
Biochemistry ; 57(50): 6878-6887, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452242

RESUMO

Smk1 is a mitogen-activated protein kinase (MAPK) family member in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore formation. Ssp2 is a meiosis-specific protein that activates Smk1 and triggers the autophosphorylation of its activation loop. A fragment of Ssp2 that is sufficient to activate Smk1 contains two segments that resemble RNA recognition motifs (RRMs). Mutations in either of these motifs eliminated Ssp2's ability to activate Smk1. In contrast, deletions and insertions within the segment linking the RRM-like motifs only partially reduced the activity of Ssp2. Moreover, when the two RRM-like motifs were expressed as separate proteins in bacteria, they activated Smk1. We also find that both motifs can be cross-linked to Smk1 and that at least one of the motifs binds near the ATP-binding pocket of the MAPK. These findings demonstrate that motifs related to RRMs can directly activate protein kinases.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Motivo de Reconhecimento de RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Ativação Enzimática/genética , Meiose/genética , Proteínas Quinases Ativadas por Mitógeno/química , Modelos Moleculares , Mutação , Conformação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
8.
Mol Biol Cell ; 29(1): 66-74, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118076

RESUMO

Smk1 is a meiosis-specific MAP kinase (MAPK) in budding yeast that is required for spore formation. It is localized to prospore membranes (PSMs), the structures that engulf haploid cells during meiosis II (MII). Similar to canonically activated MAPKs, Smk1 is controlled by phosphorylation of its activation-loop threonine (T) and tyrosine (Y). However, activation loop phosphorylation occurs via a noncanonical two-step mechanism in which 1) the cyclin-dependent kinase activating kinase Cak1 phosphorylaytes T207 during MI, and 2) Smk1 autophosphorylates Y209 as MII draws to a close. Autophosphorylation of Y209 and catalytic activity for substrates require Ssp2, a meiosis-specific protein that is translationally repressed until anaphase of MII. Ama1 is a meiosis-specific targeting subunit of the anaphase-promoting complex/cyclosome that regulates multiple steps in meiotic development, including exit from MII. Here, we show that Ama1 activates autophosphorylation of Smk1 on Y209 by promoting formation of the Ssp2/Smk1 complex at PSMs. These findings link meiotic exit to Smk1 activation and spore wall assembly.


Assuntos
Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas Cdc20/metabolismo , Membrana Celular/metabolismo , Estabilidade Enzimática , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mutação/genética , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Esporos Fúngicos/metabolismo
9.
Mol Cell Biol ; 37(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28223369

RESUMO

Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in Saccharomyces cerevisiae that couples spore morphogenesis to the completion of chromosome segregation. Similar to other MAPKs, Smk1 is controlled by phosphorylation of a threonine (T) and a tyrosine (Y) in its activation loop. However, it is not activated by a dual-specificity MAPK kinase. Instead, T207 in Smk1's activation loop is phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase (Cak1), and Y209 is autophosphorylated in an intramolecular reaction that requires the meiosis-specific protein Ssp2. In this study, we show that Smk1 is catalytically inert unless it is bound by Ssp2. While Ssp2 binding activates Smk1 by a mechanism that is independent of activation loop phosphorylation, binding also triggers autophosphorylation of Y209 in Smk1, which, along with Cak1-mediated phosphorylation of T207, further activates the kinase. Autophosphorylation of Smk1 on Y209 also appears to modify the specificity of the MAPK by suppressing Y kinase and enhancing S/T kinase activity. We also found that the phosphoconsensus motif preference of Ssp2/Smk1 is more extensive than that of other characterized MAPKs. This study therefore defines a novel mechanism of MAPK activation requiring binding of an activator and also shows that MAPKs can be diversified to recognize unique phosphorylation motifs.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo , Ativação Enzimática , Fosforilação , Saccharomyces cerevisiae/crescimento & desenvolvimento
10.
Mol Biol Cell ; 26(19): 3546-55, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26246597

RESUMO

Smk1 is a meiosis-specific MAPK that controls spore wall morphogenesis in Saccharomyces cerevisiae. Although Smk1 is activated by phosphorylation of the threonine (T) and tyrosine (Y) in its activation loop, it is not phosphorylated by a dual-specificity MAPK kinase. Instead, the T is phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase, Cak1. The Y is autophosphorylated in an intramolecular reaction that requires a meiosis-specific protein named Ssp2. The meiosis-specific CDK-like kinase, Ime2, was previously shown to positively regulate Smk1. Here we show that Ime2 activity is required to induce the translation of SSP2 mRNA at anaphase II. Ssp2 protein is then localized to the prospore membrane, the structure where spore wall assembly takes place. Next the carboxy-terminal portion of Ssp2 forms a complex with Smk1 and stimulates the autophosphorylation of its activation-loop Y residue. These findings link Ime2 to Smk1 activation through Ssp2 and define a developmentally regulated mechanism for activating MAPK at specific locations in the cell.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Anáfase/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Genes Fúngicos , Estudos de Associação Genética , Meiose , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese , Fosforilação , Saccharomyces cerevisiae/metabolismo , Análise Espaço-Temporal , Esporos Fúngicos , Quinase Ativadora de Quinase Dependente de Ciclina
11.
Mol Cell Biol ; 33(4): 688-700, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23207907

RESUMO

Smk1 is a meiosis-specific mitogen-activated protein kinase (MAPK) in Saccharomyces cerevisiae that controls spore morphogenesis. Similar to other MAPKs, it is controlled by dual phosphorylation of its T-X-Y activation motif. However, Smk1 is not phosphorylated by a prototypical MAPK kinase. Here, we show that the T residue in Smk1's activation motif is phosphorylated by the cyclin-dependent kinase (CDK)-activating kinase, Cak1. The Y residue is autophosphorylated in an independent intramolecular reaction that requires the meiosis-specific protein Ssp2. Although both SMK1 and SSP2 are expressed as middle-meiosis-specific genes, Smk1 protein starts to accumulate before Ssp2. Thus, Smk1 exists in a low-activity (pT) form early in sporulation and a high-activity (pT/pY) form later in the program. Ssp2 must be present when Smk1 is being produced to activate the autophosphorylation reaction, suggesting that Ssp2 acts through a transitional intermediate form of Smk1. These findings provide a mechanistic explanation for how Smk1 activity thresholds are generated. They demonstrate that intramolecular autophosphorylation of MAPKs can be regulated and suggest new mechanisms for coupling MAPK outputs to developmental programs.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quinases Ciclina-Dependentes/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/genética , Fenótipo , Fosforilação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Quinase Ativadora de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...