Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 255, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863029

RESUMO

BACKGROUND: RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS: We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS: The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS: C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.


Assuntos
Aedes , Interferência de RNA , RNA de Cadeia Dupla , Transfecção , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Animais , Linhagem Celular , Aedes/genética , Inativação Gênica , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/efeitos dos fármacos
2.
Biomolecules ; 13(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36979386

RESUMO

Thermolabile grape berry proteins such as thaumatin-like proteins (TLPs) and chitinases (CHIs) promote haze formation in bottled wines if not properly fined. As a natural grapevine pest, the spotted-wing fly Drosophila suzukii is a promising source of peptidases that break down grape berry proteins because the larvae develop and feed inside mature berries. Therefore, we produced recombinant TLP and CHI as model thermolabile wine haze proteins and applied a peptidomics strategy to investigate whether D. suzukii larval peptidases were able to digest them under acidic conditions (pH 3.5), which are typically found in winemaking practices. The activity of the novel peptidases was confirmed by mass spectrometry, and cleavage sites within the wine haze proteins were visualized in 3D protein models. The combination of recombinant haze proteins and peptidomics provides a valuable screening tool to identify optimal peptidases suitable for clarification processes in the winemaking industry.


Assuntos
Vitis , Vinho , Animais , Vinho/análise , Drosophila/metabolismo , Larva/metabolismo , Vitis/química , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA