Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 21(7): 84-99, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32525615

RESUMO

This work investigates the incorporation of fiducial marker-based visibility parameters into the optimization of volumetric modulated arc therapy (VMAT) plans. We propose that via this incorporation, one may produce treatment plans that aid real-time tumor tracking approaches employing exit imaging of the therapeutic beam (e.g., via EPID), in addition to satisfying purely dosimetric requirements. We investigated the feasibility of this approach for a thorax and prostate site using optimization software (MonArc). For a thorax phantom and a lung patient, three fiducial markers were inserted around the tumor and VMAT plans were created with two partial arcs and prescription dose of 48 Gy (4 fractions). For a prostate patient with three markers in the prostate organ, a VMAT plan was created with two partial arcs and prescription dose 72.8 Gy (28 fractions). We modified MonArc to include marker-based visibility constraints ("hard"and "soft"). A hard constraint (HC) imposes full visibility for all markers, while a soft constraint (SC) penalizes visibility for specific markers in the beams-eye-view. Dose distributions from constrained plans (HC and SC) were compared to the reference nonconstrained (NC) plan using metrics including conformity index (CI), homogeneity index (HI), gradient measure (GM), and dose to 95% of planning target volume (PTV) and organs at risk (OARs). The NC plan produced the best target conformity and the least doses to the OARs for the entire dataset, followed by the SC and HC plans. Using SC plans provided acceptable dosimetric tolerances for both the target and OARs. However, OAR doses may be increased or decreased based on the constrained marker location and number of trackable markers. In conclusion, we demonstrate that visibility constraints can be incorporated into the optimization together with dosimetric objectives to produce treatment plans satisfying both objectives. This approach should ensure greater clinical success when applying real-time tracking algorithms, using VMAT delivery.


Assuntos
Neoplasias , Radioterapia de Intensidade Modulada , Estudos de Viabilidade , Humanos , Masculino , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Biomed Phys Eng Express ; 7(1)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-35013009

RESUMO

This study proposes that incorporating marker-based visibility constraints into the optimization of volumetric modulated arc therapy (VMAT) will generate treatment plans which not only ensure a higher chance of successfully applying real-time tumor tracking techniques, but also simultaneously satisfy dosimetric objectives. This was applied clinically and investigated for multiple disease sites (10 prostate, 5 liver, and 5 lung) using a radiotherapy optimization software (MonArc), where these new constraints were added to conventional dosimetric constraints. For all the investigated sites, three fiducial markers were located inside or around the planning target volume (PTV), and VMAT plans were created for each patient. We modifiedMonArcto analyze the multi-leaf collimator (MLC) beam's-eye-view at all control points in the gantry arc, while including marker-based visibility constraints of type 'hard' (i.e. requiring 100% visibility of all markers, HC) and 'soft' (i.e. penalizes visibility for one marker [SCI] or two markers [SCII] only) in the optimization process. Dose distributions resulting from the constrained plans (HC, SCI, and SCII) were compared to the non-constrained plan (NC-plans optimized without visibility constraints) using several quantitative dose metrics including the conformity index, homogeneity index, doses to PTV and to organs-at-risk (OAR). Generally, the NC plan produced the best PTV dose conformity and the least OAR doses for the entire patient datasets, followed by the SC and then HC plans, with all the optimization approaches typically achieving acceptable dose metrics. Across the three disease sites, visibility of all three markers in MLC apertures increased from 32% to 100% of available control points as visibility constraints strengthened. Although dose metrics showed some deterioration for constrained plans (-6% for SCIup to -15% for HC using the PTV average index), the required dosimetric objectives were still satisfied in at least 90% of patients. In conclusion, we demonstrated that marker and tumour visibility constraints can be incorporated with dosimetric objectives to produce treatment plans satisfying both objectives, which should ensure greater success when applying real-time tracking for VMAT delivery.


Assuntos
Neoplasias , Radioterapia de Intensidade Modulada , Humanos , Masculino , Neoplasias/radioterapia , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
3.
J Xray Sci Technol ; 24(6): 913-930, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27612054

RESUMO

OBJECTIVE: Iterative algorithms are gaining clinical acceptance in CT. We performed objective phantom-based image quality evaluation of five commercial iterative reconstruction algorithms available on four different multi-detector CT (MDCT) scanners at different dose levels as well as the conventional filtered back-projection (FBP) reconstruction. METHODS: Using the Catphan500 phantom, we evaluated image noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF) and noise-power spectrum (NPS). The algorithms were evaluated over a CTDIvol range of 0.75-18.7 mGy on four major MDCT scanners: GE DiscoveryCT750HD (algorithms: ASIR™ and VEO™); Siemens Somatom Definition AS+ (algorithm: SAFIRE™); Toshiba Aquilion64 (algorithm: AIDR3D™); and Philips Ingenuity iCT256 (algorithm: iDose4™). Images were reconstructed using FBP and the respective iterative algorithms on the four scanners. RESULTS: Use of iterative algorithms decreased image noise and increased CNR, relative to FBP. In the dose range of 1.3-1.5 mGy, noise reduction using iterative algorithms was in the range of 11%-51% on GE DiscoveryCT750HD, 10%-52% on Siemens Somatom Definition AS+, 49%-62% on Toshiba Aquilion64, and 13%-44% on Philips Ingenuity iCT256. The corresponding CNR increase was in the range 11%-105% on GE, 11%-106% on Siemens, 85%-145% on Toshiba and 13%-77% on Philips respectively. Most algorithms did not affect the MTF, except for VEO™ which produced an increase in the limiting resolution of up to 30%. A shift in the peak of the NPS curve towards lower frequencies and a decrease in NPS amplitude were obtained with all iterative algorithms. VEO™ required long reconstruction times, while all other algorithms produced reconstructions in real time. Compared to FBP, iterative algorithms reduced image noise and increased CNR. CONCLUSIONS: The iterative algorithms available on different scanners achieved different levels of noise reduction and CNR increase while spatial resolution improvements were obtained only with VEO™. This study is useful in that it provides performance assessment of the iterative algorithms available from several mainstream CT manufacturers.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
4.
Med Phys ; 39(9): 5457-68, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22957613

RESUMO

PURPOSE: To determine the effect of different bleaching wavelengths on the response of Al(2)O(3):C optically stimulated luminescence detectors (OSLDs) exposed to accumulated doses of 6 MV photon beams. METHODS: In this study the authors used nanoDot OSLDs readout with a MicroStar reader. The authors first characterized the dose-response, fading, and OSL signal loss of OSLDs exposed to doses from 0.5 to 10 Gy. To determine the effect of different bleaching wavelengths on the OSLDs' response, the authors optically treated the OSLDs with 26 W fluorescent lamps in two modes: (i) directly under the lamps for 10, 120, and 600 min and (ii) with a long-pass filter for 55, 600, and 2000 min. Changes in the OSLDs' sensitivity were determined for an irradiation-readout-bleaching-readout cycle after irradiations with 1 and 10 Gy dose fractions. RESULTS: The OSLDs presented supralinearity for doses of 2 Gy and above. The signal loss rates for sequential readouts were (0.287 ± 0.007)% per readout in the reader's strong-stimulation mode, and (0.019 ± 0.002)% and (0.035 ± 0.007)% per readout for doses of 0.2 and 10 Gy, respectively, in the reader's weak-stimulation mode. Fading half-life values ranged from (0.98 ± 0.14) min to (1.77 ± 0.24) min and fading showed dose dependence for the first 10-min interval. For 10 and 55 min bleaching using modes (i) and (ii), the OSL signal increased 14% for an accumulated dose of 7 Gy (1 Gy fractions). For OSLDs exposed to 10 Gy fractions, the OSL signal increased 30% and 25% for bleaching modes (i) and (ii) and accumulated dose of 70 Gy, respectively. For 120 and 600 min bleaching using modes (i) and (ii), the OSL signal increased 2.7% and 1.5% for an accumulated dose of 7 Gy (1 Gy fractions), respectively. For 10 Gy fractions, the signal increased 14% for bleaching mode (i) (120 min bleaching) and decreased 1.3% for bleaching mode (ii) (600 min bleaching) for an accumulated dose of 70 Gy. For 600 and 2000 min bleaching using modes (i) and (ii), the signal increased 2.3% and 1.8% for an accumulated dose of 7 Gy (1 Gy fractions), respectively. For 10 Gy fractions, the signal increased 10% for mode (i) (600 min bleaching) and decreased 2.5% for mode (ii) (2000 min bleaching) for an accumulated dose of 70 Gy. CONCLUSIONS: The dose-response of nanoDot OSLDs read using the MicroStar reader presented supralinearity for doses of 2 Gy and above. The signal loss as a function of sequential readouts depended on dose. Fading also depended on dose for the first 10-min interval. For dose fractions of 1 and 10 Gy, OSLDs may be reused within 3% and 5% accuracies up to the maximum accumulated dose of 7 and 70 Gy investigated in this study, respectively. These accuracies were obtained after the OSLDs were bleached with a light source with wavelengths above about 495 nm. The authors also concluded that changes in sensitivity of OSLDs depended on bleaching time, accumulated dose, and wavelength spectrum of the bleaching source.


Assuntos
Óxido de Alumínio , Carbono , Medições Luminescentes/métodos , Fenômenos Ópticos , Fótons , Humanos , Luz , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA