Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clim Dyn ; 57(11-12): 3223-3243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744316

RESUMO

Instrumental records suggest multidecadal variability in Arctic surface temperature throughout the twentieth century. This variability is caused by a combination of external forcing and internal variability, but their relative importance remains unclear. Since the early twentieth century Arctic warming has been linked to decadal variability in the Pacific, we hypothesize that the Pacific could impact decadal temperature trends in the Arctic throughout the twentieth century. To investigate this, we compare two ensembles of historical all-forcing twentieth century simulations with the Norwegian Earth System Model (NorESM): (1) a fully coupled ensemble and (2) an ensemble where momentum flux anomalies from reanalysis are prescribed over the Indo-Pacific Ocean to constrain Pacific sea surface temperature variability. We find that the combined effect of tropical and extratropical Pacific decadal variability can explain up to ~ 50% of the observed decadal surface temperature trends in the Arctic. The Pacific-Arctic connection involves both lower tropospheric horizontal advection and subsidence-induced adiabatic heating, mediated by Aleutian Low variations. This link is detected across the twentieth century, but the response in Arctic surface temperature is moderated by external forcing and surface feedbacks. Our results also indicate that increased ocean heat transport from the Atlantic to the Arctic could have compensated for the impact of a cooling Pacific at the turn of the twenty-first century. These results have implications for understanding the present Arctic warming and future climate variations.

2.
Sci Rep ; 10(1): 3432, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32076103

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 3014, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816190

RESUMO

The individual impact of North Atlantic and Pacific Ocean Western Boundary Currents (OWBCs) on the tropospheric circulation has recently been studied in depth. However, their simultaneous role in shaping the hemisphere-scale wintertime troposphere/stratosphere-coupled circulation and its variability have not been considered. Through semi-idealized Atmospheric General-Circulation-Model experiments, we show that the North Atlantic and Pacific OWBCs jointly maintain and shape the wintertime hemispheric circulation and its leading mode of variability Northern Annular Mode (NAM). The OWBCs energize baroclinic waves that reinforce quasi-annular hemispheric structure in the tropospheric eddy-driven jetstreams and NAM variability. Without the OWBCs, the wintertime NAM variability is much weaker and its impact on the continental and maritime surface climate is largely insignificant. Atmospheric energy redistribution caused by the OWBCs acts to damp the near-surface atmospheric baroclinicity and compensates the associated oceanic meridional energy transport. Furthermore, the OWBCs substantially weaken the wintertime stratospheric polar vortex by enhancing the upward planetary wave propagation, and thereby affecting both stratospheric and tropospheric NAM-annularity. Whereas the overall impact of the extra-tropical OWBCs on the stratosphere results mainly from the Pacific, the impact on the troposphere results from both the Pacific and Atlantic OWBCs.

4.
Sci Rep ; 6: 29537, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27404090

RESUMO

Tropopause temperatures (TPTs) control the amount of stratospheric water vapour, which influences chemistry, radiation and circulation in the stratosphere, and is also an important driver of surface climate. Decadal variability and long-term trends in tropical TPTs as well as stratospheric water vapour are largely unknown. Here, we present for the first time evidence, from reanalysis and state-of-the-art climate model simulations, of a link between decadal variability in tropical TPTs and the Pacific Decadal Oscillation (PDO). The negative phase of the PDO is associated with anomalously cold sea surface temperatures (SSTs) in the tropical east and central Pacific, which enhance the zonal SST gradient across the equatorial Pacific. The latter drives a stronger Walker Circulation and a weaker Hadley Circulation, which leads to less convection and subsequently a warmer tropopause over the central equatorial Pacific. Over the North Pacific, positive sea level pressure anomalies occur, which damp vertical wave propagation into the stratosphere. This in turn slows the Brewer-Dobson circulation, and hence warms the tropical tropopause, enabling more water vapour to enter the stratosphere. The reverse chain of events holds for the positive phase of the PDO. Such ocean-troposphere-stratosphere interactions may provide an important feedback on the Earth's global surface temperature.

5.
Nat Commun ; 6: 8268, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369503

RESUMO

Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth's regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1-2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA