Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14180, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986064

RESUMO

For millennia, Aspilia africana has been used across Africa to treat various diseases including malaria, wounds, and diabetes. In this study, temperature influenced the in vitro germination of A. africana with highest final germination percentage (FGP) and germination index (GI) of 65.0 ± 7.64% and 2.26 ± 0.223, respectively, at 19.8 °C. Priming seeds with H2O, KNO3, and GA3 (gibberellic acid 3) improved both in vitro germination and ex vitro emergence of A. africana seeds. Seed priming with [Formula: see text] M GA3 produced overall highest in vitro FGP (from 90.0 ± 4.08% to 100 ± 0.00%) and GI (from 2.97 ± 0.385 to 3.80 ± 0.239) across all priming durations. Seeds primed with KNO3 had better germination parameters for 6 and 12 h compared to 18 and 24 h. Furthermore, the highest in vitro FGP (100 ± 0.00%) was observed in seeds primed for 12 h with [Formula: see text] M GA3. Ex vitro A. africana seed emergence was significantly enhanced by GA3 priming. Priming A. africana seeds with H2O, KNO3, and GA3 improved their growth after 3 months, with the overall best growth for seeds primed with [Formula: see text] M GA3. Seed priming of A. africana is a feasible approach for improving germination and seed emergence, and enhancing plant growth.


Assuntos
Asteraceae , Plantas Medicinais , Germinação , Sementes , Temperatura
2.
BMC Microbiol ; 22(1): 120, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505298

RESUMO

BACKGROUND: Oil spills are ranked among the greatest global challenges to humanity. In Uganda, owing to the forthcoming full-scale production of multi-billion barrels of oil, the country's oil pollution burden is anticipated to escalate, necessitating remediation. Due to the unsuitability of several oil clean-up technologies, the search for cost-effective and environmentally friendly remediation technologies is paramount. We thus carried out this study to examine the occurrence of metabolically active indigenous bacterial species and chemical characteristics of soils with a long history of oil pollution in Uganda that can be used in the development of a bacterial-based product for remediation of oil-polluted sites. RESULTS: Total hydrocarbon analysis of the soil samples revealed that the three most abundant hydrocarbons were pyrene, anthracene and phenanthrene that were significantly higher in oil-polluted sites than in the control sites. Using the BIOLOG EcoPlate™, the study revealed that bacterial species richness, bacterial diversity and bacterial activity (ANOVA, p < 0.05) significantly varied among the sites. Only bacterial activity showed significant variation across the three cities (ANOVA, p < 0.05). Additionally, the study revealed significant moderate positive correlation between the bacterial community profiles with Zn and organic contents while correlations between the bacterial community profiles and the hydrocarbons were largely moderate and positively correlated. CONCLUSIONS: This study revealed largely similar bacterial community profiles between the oil-polluted and control sites suggestive of the occurrence of metabolically active bacterial populations in both sites. The oil-polluted sites had higher petroleum hydrocarbon, heavy metal, nitrogen and phosphorus contents. Even though we observed similar bacterial community profiles between the oil polluted and control sites, the actual bacterial community composition may be different, owing to a higher exposure to petroleum hydrocarbons. However, the existence of oil degrading bacteria in unpolluted soils should not be overlooked. Thus, there is a need to ascertain the actual indigenous bacterial populations with potential to degrade hydrocarbons from both oil-polluted and unpolluted sites in Uganda to inform the design and development of a bacterial-based oil remediation product that could be used to manage the imminent pollution from oil exploration and increased utilization of petroleum products in Uganda.


Assuntos
Petróleo , Poluentes do Solo , Bactérias/metabolismo , Cidades , Hidrocarbonetos/metabolismo , Petróleo/microbiologia , Solo/química , Poluentes do Solo/metabolismo , Uganda
3.
Sci Rep ; 12(1): 7044, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487926

RESUMO

Osteoporosis affects millions of people worldwide. As such, this study assessed the macrophage-dependent in vitro anti-osteoporosis, phytochemical profile and hepatotoxicity effects in zebrafish larvae of the stem bark extracts of P. africana. Mouse bone marrow macrophages (BMM) cells were plated in 96-well plates and treated with P. africana methanolic bark extracts at concentrations of 0, 6.25, 12.5, 25, and 50 µg/ml for 24 h. The osteoclast tartrate-resistant acid phosphatase (TRAP) activity and cell viability were measured. Lipopolysaccharides (LPS) induced Nitrite (NO) and interleukin-6 (IL-6) production inhibitory effects of P. africana bark extracts (Methanolic, 150 µg/ml) and ß-sitosterol (100 µM) were conducted using RAW 264.7 cells. Additionally, inhibition of IL-1ß secretion and TRAP activity were determined for chlorogenic acid, catechin, naringenin and ß-sitosterol. For toxicity study, zebrafish larvae were exposed to different concentrations of 25, 50, 100, and 200 µg/ml P. africana methanolic, ethanolic and water bark extracts. Dimethyl sulfoxide (0.05%) was used as a negative control and tamoxifen (5 µM) and dexamethasone (40 µM or 80 µM) were positive controls. The methanolic P. africana extracts significantly inhibited (p < 0.001) TRAP activity at all concentrations and at 12.5 and 25 µg/ml, the extract exhibited significant (p < 0.05) BMM cell viability. NO production was significantly inhibited (all p < 0.0001) by the sample. IL-6 secretion was significantly inhibited by P. africana methanolic extract (p < 0.0001) and ß-sitosterol (p < 0.0001) and further, chlorogenic acid and naringenin remarkably inhibited IL-1ß production. The P. africana methanolic extract significantly inhibited RANKL-induced TRAP activity. The phytochemical study of P. africana stem bark revealed a number of chemical compounds with anti-osteoporosis activity. There was no observed hepatocyte apoptosis in the liver of zebrafish larvae. In conclusion, the stem bark of P. africana is non-toxic to the liver and its inhibition of TRAP activity makes it an important source for future anti-osteoporosis drug development.


Assuntos
Osteoporose , Prunus africana , Animais , Ácido Clorogênico/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Interleucina-6/análise , Metanol/análise , Camundongos , Osteoporose/tratamento farmacológico , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Extratos Vegetais/química , Células RAW 264.7 , Peixe-Zebra
4.
Artigo em Inglês | MEDLINE | ID: mdl-35116070

RESUMO

Prostate cancer is one of the major causes of cancer-related deaths among men globally. Medicinal plants have been explored as alternative treatment options. Herein, we assessed the in vitro cytotoxic effects of 70% ethanolic root extracts of six-month-old micropropagated Prunus africana (PIR) on PC-3 prostate cancer cells as an alternative to the traditionally used P. africana stem-bark extract (PWS) treatment. In vitro assays on PC-3 cells included annexin-V and propidium iodide staining, DAPI staining, and caspase-3 activity analysis through western blotting. PC-3 cells were exposed to PWS and PIR at different concentrations, and dose-dependent antiprostate cancer effects were observed. PC-3 cell viability was determined using CCK-8 assay, which yielded IC50 values of 52.30 and 82.40 µg/mL for PWS and PIR, respectively. Annexin-V and PI staining showed dose-dependent apoptosis of PC-3 cells. Significant (p < 0.001) percent of DAPI-stained apoptotic PC-3 cells were observed in PWS, PIR, and doxorubicin treatment compared with the negative control. PWS treatment substantially elevated cleaved caspase-3 levels in PC-3 cells compared with the PIR treatment. These results provide evidence for the antiprostate cancer potential of PIR and sets a basis for further research to enhance future utilization of roots of young micropropagated P. africana for prostate cancer treatment as an alternative to stem bark. Moreover, micropropagation approach may help provide the required raw materials and hence reduce the demand for P. africana from endangered wild population.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34567222

RESUMO

Aspilia africana has been used for generations to treat many diseases in Africa. Its biological activities, including antioxidant and anti-inflammatory potential, are attributed to a number of secondary metabolites, including alkaloids and polyphenolics. The antioxidant activities of A. africana callus (CA), juvenile in vitro leaf (IL) and root (IR), ex vitro root (SR) and leaf (SL), and wild leaf (WL) dried samples were assessed based on their diphenylpicrylhydrazyl (DPPH) free radical scavenging abilities. The total phenolic and flavonoid content of different plant samples was compared. Further, high-pressure liquid chromatography (HPLC) was used to quantitatively determine chlorogenic acid content in the A. africana plant samples. Fourier transform near-infrared (FT-NIR) analysis was also carried out to compare the antioxidant phytochemical content in the A. africana plant tissues. Among the samples, IR, with the highest total phenolic content (167.84 ± 1.057 mg GAE/g), total flavonoid content (135.06 ± 0.786 mg RUE/g), and chlorogenic acid (5.23 ± 0.298 mg/g) content, had the most potent antioxidant activity (IC50 = 27.25 ± 5.028 µg/mL), followed by WL. The lowest polyphenolic content and antioxidant activity were observed in SR. The antioxidant activities of A. africana tissues were positively correlated with the total phenolic and flavonoid content in the samples. The differences in antioxidant activities of A. africana tissues could be attributed to the difference in their polyphenolic content. Our study reports, for the first time, the antioxidant activities of A. africana callus and roots (in vitro and ex vitro). The A. africana samples IR, CA, and WL could be valuable natural sources of antioxidants that could be further exploited for the development of useful pharmaceutical products.

6.
Front Plant Sci ; 12: 704896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394159

RESUMO

Aspilia africana (Pers.) C. D. Adams is an important medicinal plant, that has been used as traditional medicine in many African countries for the treatment of various health problems, including inflammatory conditions, osteoporosis, tuberculosis, cough, measles, diabetes, diarrhea, malaria, and wounds. We developed an efficient and reproducible protocol for in vitro regeneration of A. africana from nodes. We assessed the effects of plant tissue culture media on A. africana growth, cytokinins for in vitro shoot regeneration and proliferation, and auxins for the rooting of regenerated shoots. Furthermore, chlorophyll content, photosynthetic rates, anatomy (leaves, stems, and roots), and Fourier transform near-infrared (FT-NIR) spectra (leaves, stems, and roots) of the in vitro regenerated and maternal A. africana plants were compared. Murashige and Skoog media, containing vitamins fortified with benzylaminopurine (BA, 1.0 mg/l), regenerated the highest number of shoots (13.0 ± 0.424) from A. africana nodal segments. 1-naphthaleneacetic acid (NAA, 0.1 mg/l) produced up to 13.10 ± 0.873 roots, 136.35 ± 4.316 mm length, and was the most efficient for rooting. During acclimatization, the in vitro regenerated A. africana plants had a survival rate of 95.7%, displaying normal morphology and growth features. In vitro regenerated and mother A. africana plants had similar chlorophyll contents, photosynthetic rates, stem and root anatomies, and FT-NIR spectra of the leaf, stem, and roots. The established regeneration protocol could be used for large-scale multiplication of the plant within a short time, thus substantially contributing to its rapid propagation and germplasm preservation, in addition to providing a basis for the domestication of this useful, high-value medicinal plant.

7.
Front Plant Sci ; 12: 797721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975987

RESUMO

The medicinal plant, Aspilia africana, has been traditionally used in several African countries to treat many diseases such as tuberculosis, cough, inflammation, malaria, osteoporosis, and diabetes. In this study, we developed a protocol for in vitro propagation of A. africana using indirect shoot organogenesis from leaf and root explants of in vitro-grown seedlings and assessed the tissues at different developmental stages. The highest callus induction (91.9 ± 2.96%) from leaf explants was in the Murashige and Skoog (MS) medium augmented with 1.0 mg/L 6-Benzylaminopurine (BAP) and 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) while from root explants, the highest callus induction (92.6 ± 2.80%) was in the same plant tissue culture medium augmented with 0.5 mg/L BAP and 1.0 mg/L 2,4-D. The best shoot regeneration capacity from leaf-derived calli (i.e., 80.0 ± 6.23% regeneration percentage and 12.0 ± 6.23 shoots per callus) was obtained in medium augmented with 1.0 mg/L BAP and 0.05 mg/L α-Naphthaleneacetic acid (NAA); the best regeneration capacity for root-derived calli (i.e., 86.7 ± 6.24% shoot regeneration percentage and 14.7 ± 1.11 shoots per callus) was obtained in the MS medium augmented with 1.0 mg/L BAP, 0.05 mg/L NAA, and 0.1 mg/L Thidiazuron (TDZ). Regenerated plantlets developed a robust root system in 1/2 MS medium augmented with 0.1 mg/L NAA and had a survival rate of 93.6% at acclimatization. The in vitro regenerated stem tissue was fully differentiated, while the young leaf tissue consisted of largely unorganized and poorly differentiated cells with large intercellular airspaces typical of in vitro leaf tissues. Our study established a protocol for the indirect regeneration of A. africana and offers a basis for its domestication, large-scale multiplication, and germplasm preservation. To the best of our knowledge, this is the first study to develop an indirect regeneration protocol for A. africana and conduct anatomical assessment through the different stages of development from callus to a fully developed plantlet.

8.
Front Plant Sci ; 11: 548003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324427

RESUMO

Prunus africana is an endangered medicinal plant and hence new propagation methods are urgently required to increase its populations. Unfortunately, propagation through seeds is challenging due to its long flowering cycle and recalcitrant seeds. We developed a protocol for micropropagation using nodal segment explants. A woody plant medium supplemented with vitamins, 15 g L-1 sucrose, and 1.0 mg L-1 6-benzylaminopurine (BAP) supported the optimum rate (100%) of axillary shoot initiation. Supplementation with 15 g L-1 sucrose and 1.5 mg L-1 indole-3-acetic acid (IAA) provided the optimum rate (75%) of root initiation. Rooted plantlets were successfully planted in sterilized horticultural soil containing perlite (2:1 v/v) and the survival rate was 98% following acclimatization. The photosynthetic rate assessed using FlourPen FP110 series showed that the ratio of variable fluorescence to maximum fluorescence mean value for in vitro regenerated P. africana (0.830 ± 0.0008) was similar to that of the maternal P. africana plant (0.825 ± 0.005), indicating similarity in their photosynthetic performance; a pivotal process for growth and development. The Fourier transform near-IR (FT-NIR) spectrometer analysis of the in vitro regenerated and the maternal P. africana plant samples exhibited homogeneity in the absorbance peaks at 8,273, 6,344, and 4,938-4,500 cm-1 associated with lipids, starch, and proteins. The genetic fidelity of regenerated plants was confirmed using the randomly amplified polymorphic DNA (RAPD) technique. Our protocol is suitable for use in large-scale P. africana to meet the increasing demands for it in the global market.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33029177

RESUMO

Osteoporosis is one of the main health problems in the world today characterized by low bone mass and deterioration in bone microarchitecture. In recent years, the use of natural products approach to treat it has been in the increase. In this study, in vitro antiosteoporosis activity and hepatotoxicity of P. jamasakura bark extracts were evaluated. Methods. Mouse bone marrow macrophage (BMM) cells were incubated with tartrate-resistant acid phosphate (TRAP) buffers and p-nitrophenyl phosphate and cultured with different P. jamasakura bark extracts at concentrations of 0, 6.25, 12.5, 25, and 50 µg/ml in the presence of the receptor activator of nuclear factor kappa-Β ligand (RANKL) for 6 days. The osteoclast TRAP activity and cell viability were measured. Nitric oxide (NO) assay was conducted using murine macrophage-like RAW 264.7 cells treated with P. jamasakura ethanolic and methanolic bark extracts at concentrations of 0, 6.25, 12.5, 25, 50, 100, and 200 µg/ml. For hepatotoxicity assessment, zebrafish larvae were exposed to P. jamasakura bark extracts, 0.05% dimethyl sulfoxide as a negative control, and 5 µM tamoxifen as a positive control. The surviving larvae were anesthetized and assessed for hepatocyte apoptosis. Results. TRAP activity was significantly inhibited (p < 0.001) at all concentrations of P. jamasakura extracts compared to the control treatment. At 50 µg/ml, both ethanolic and methanolic extracts of P. jamasakura exhibited significant (p < 0.01) BMM cell viability compared to the control treatment. P. jamasakura ethanolic and methanolic extracts had significant inhibitory (p < 0.01) effects on lipopolysaccharide (LPS)-induced NO production at 200 µg/ml and exhibited significant (p < 0.01) and (p < 0.05) stimulative effects, respectively, on RAW 264.7 cell viability. No overt hepatotoxicity was observed in the liver of zebrafish larvae in any of the treatments. Conclusion. The TRAP activity of P. jamasakura bark gives a foundation for further studies to enhance future development of antiosteoporosis drug.

10.
Artigo em Inglês | MEDLINE | ID: mdl-28286531

RESUMO

Prostate cancer remains one of the major causes of death worldwide. In view of the limited treatment options for patients with prostate cancer, preventive and treatment approaches based on natural compounds can play an integral role in tackling this disease. Recent evidence supports the beneficial effects of plant-derived phytochemicals as chemopreventive and chemotherapeutic agents for various cancers, including prostate cancer. Prunus africana has been used for generations in African traditional medicine to treat prostate cancer. This review examined the potential roles of the phytochemicals from P. africana, an endangered, sub-Saharan Africa plant in the chemoprevention and chemotherapy of prostate cancer. In vitro and in vivo studies have provided strong pharmacological evidence for antiprostate cancer activities of P. africana-derived phytochemicals. Through synergistic interactions between different effective phytochemicals, P. africana extracts have been shown to exhibit very strong antiandrogenic and antiangiogenic activities and have the ability to kill tumor cells via apoptotic pathways, prevent the proliferation of prostate cancer cells, and alter the signaling pathways required for the maintenance of prostate cancer cells. However, further preclinical and clinical studies ought to be done to advance and eventually use these promising phytochemicals for the prevention and chemotherapy of human prostate cancer.

11.
Afr Health Sci ; 15(3): 828-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26957971

RESUMO

INTRODUCTION: Artemisia annua plant from the family Asteracea is a powerful antimalarial plant introduced to Uganda around 2003. In addition to the artemisinin component, the plant also contains flavonoids which work in synergy to artemisinin against malaria parasites. The plant also contains aromatic oils which repel mosquitoes. In this paper we report the variations in antimalarial components of A. annua samples from the regions cultivating it in Uganda. METHODS: Artemisia annua samples were obtained from three regions that cultivated the plant at the time of this study. The samples were brought to laboratory, authenticated and processed. The levels of artemisinin, total flavonoids and aromatic components were quantified using high performance thin layer chromatography, ultra violet spectrophotometry and gas chromatography respectively. RESULTS: Artemisinin and total flavonoids levels were higher in samples obtained from high land areas (western and south western region) compared to that obtained from lowland regions (central) i.e 0.8% Vs 0.4% and 2.6% Vs 1.5% respectively. The aromatic oils (mosquito repellent components) were similar with camphor component being highest and levels ranging from 75.4% to 79.0%. CONCLUSION: Our findings show that the active components in Artemisia annua cultivated and used in the Uganda vary with geographical regions and this calls for standardisation by source.


Assuntos
Antimaláricos/química , Artemisia annua/química , Artemisia annua/classificação , Artemisininas/isolamento & purificação , Cromatografia em Camada Fina/métodos , Flavonoides/isolamento & purificação , Folhas de Planta/química , Humanos , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...