Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 36(1): 90-102.e7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171340

RESUMO

Interactions between lineage-determining and activity-dependent transcription factors determine single-cell identity and function within multicellular tissues through incompletely known mechanisms. By assembling a single-cell atlas of chromatin state within human islets, we identified ß cell subtypes governed by either high or low activity of the lineage-determining factor pancreatic duodenal homeobox-1 (PDX1). ß cells with reduced PDX1 activity displayed increased chromatin accessibility at latent nuclear factor κB (NF-κB) enhancers. Pdx1 hypomorphic mice exhibited de-repression of NF-κB and impaired glucose tolerance at night. Three-dimensional analyses in tandem with chromatin immunoprecipitation (ChIP) sequencing revealed that PDX1 silences NF-κB at circadian and inflammatory enhancers through long-range chromatin contacts involving SIN3A. Conversely, Bmal1 ablation in ß cells disrupted genome-wide PDX1 and NF-κB DNA binding. Finally, antagonizing the interleukin (IL)-1ß receptor, an NF-κB target, improved insulin secretion in Pdx1 hypomorphic islets. Our studies reveal functional subtypes of single ß cells defined by a gradient in PDX1 activity and identify NF-κB as a target for insulinotropic therapy.


Assuntos
Células Secretoras de Insulina , NF-kappa B , Animais , Humanos , Camundongos , Cromatina/metabolismo , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , NF-kappa B/metabolismo
2.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188462

RESUMO

The mammalian circadian clock drives daily oscillations in physiology and behavior through an autoregulatory transcription feedback loop present in central and peripheral cells. Ablation of the core clock within the endocrine pancreas of adult animals impairs the transcription and splicing of genes involved in hormone exocytosis and causes hypoinsulinemic diabetes. Here, we developed a genetically sensitized small-molecule screen to identify druggable proteins and mechanistic pathways involved in circadian ß-cell failure. Our approach was to generate ß-cells expressing a nanoluciferase reporter within the proinsulin polypeptide to screen 2640 pharmacologically active compounds and identify insulinotropic molecules that bypass the secretory defect in CRISPR-Cas9-targeted clock mutant ß-cells. We validated hit compounds in primary mouse islets and identified known modulators of ligand-gated ion channels and G-protein-coupled receptors, including the antihelmintic ivermectin. Single-cell electrophysiology in circadian mutant mouse and human cadaveric islets revealed ivermectin as a glucose-dependent secretagogue. Genetic, genomic, and pharmacological analyses established the P2Y1 receptor as a clock-controlled mediator of the insulinotropic activity of ivermectin. These findings identify the P2Y1 purinergic receptor as a diabetes target based upon a genetically sensitized phenotypic screen.


Circadian rhythms ­ 'inbuilt' 24-hour cycles ­ control many aspects of behaviour and physiology. In mammals, they operate in nearly all tissues, including those involved in glucose metabolism. Recent studies have shown that mice with faulty genes involved in circadian rhythms, the core clock genes, can develop diabetes. Diabetes arises when the body struggles to regulate blood sugar levels. In healthy individuals, the hormone insulin produced by beta cells in the pancreas regulates the amount of sugar in the blood. But when beta cells are faulty and do not generate sufficient insulin levels, or when insulin lacks the ability to stimulate cells to take up glucose, diabetes can develop. Marcheva, Weidemann, Taguchi et al. wanted to find out if diabetes caused by impaired clock genes could be treated by targeting pathways regulating the secretion of insulin. To do so, they tested over 2,500 potential drugs on genetically modified beta cells with faulty core clock genes. They further screened the drugs on mice with the same defect in their beta cells. Marcheva et al. identified one potential compound, the anti-parasite drug ivermectin, which was able to restore the secretion of insulin. When ivermectin was applied to both healthy mice and mice with faulty beta cells, the drug improved the control over glucose levels by activating a specific protein receptor that senses molecules important for storing and utilizing energy. The findings reveal new drug targets for treating forms of diabetes associated with deregulation of the pancreatic circadian clock. The drug screening strategy used in the study may also be applied to reveal mechanisms underlying other conditions associated with disrupted circadian clocks, including sleep loss and jetlag.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Fatores de Transcrição ARNTL , Animais , Linhagem Celular , Relógios Circadianos , Ritmo Circadiano , Criptocromos/genética , Criptocromos/metabolismo , Diabetes Mellitus/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Ensaios de Triagem em Larga Escala , Homeostase , Humanos , Insulina/metabolismo , Células Secretoras de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Nat Metab ; 3(12): 1621-1632, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34903884

RESUMO

In mammals, circadian rhythms are entrained to the light cycle and drive daily oscillations in levels of NAD+, a cosubstrate of the class III histone deacetylase sirtuin 1 (SIRT1) that associates with clock transcription factors. Although NAD+ also participates in redox reactions, the extent to which NAD(H) couples nutrient state with circadian transcriptional cycles remains unknown. Here we show that nocturnal animals subjected to time-restricted feeding of a calorie-restricted diet (TRF-CR) only during night-time display reduced body temperature and elevated hepatic NADH during daytime. Genetic uncoupling of nutrient state from NADH redox state through transduction of the water-forming NADH oxidase from Lactobacillus brevis (LbNOX) increases daytime body temperature and blood and liver acyl-carnitines. LbNOX expression in TRF-CR mice induces oxidative gene networks controlled by brain and muscle Arnt-like protein 1 (BMAL1) and peroxisome proliferator-activated receptor alpha (PPARα) and suppresses amino acid catabolic pathways. Enzymatic analyses reveal that NADH inhibits SIRT1 in vitro, corresponding with reduced deacetylation of SIRT1 substrates during TRF-CR in vivo. Remarkably, Sirt1 liver nullizygous animals subjected to TRF-CR display persistent hypothermia even when NADH is oxidized by LbNOX. Our findings reveal that the hepatic NADH cycle links nutrient state to whole-body energetics through the rhythmic regulation of SIRT1.


Assuntos
Metabolismo Energético , Jejum , NAD/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transcrição Gênica , Aminoácidos/metabolismo , Animais , Temperatura Corporal , Ritmo Circadiano , Dieta , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Camundongos , Fatores de Transcrição
5.
Genes Dev ; 34(15-16): 1089-1105, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32616519

RESUMO

The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic ß cells that are perturbed in Clock-/- and Bmal1-/- ß-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant ß cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in ß-cell function across the sleep/wake cycle.


Assuntos
Processamento Alternativo , Relógios Circadianos/genética , Exocitose , Glucose/metabolismo , Secreção de Insulina/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/fisiologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/fisiologia , Células Cultivadas , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Homeostase , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/fisiologia , Obesidade/genética , Obesidade/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Fatores de Transcrição/fisiologia
6.
Mol Cell ; 78(5): 835-849.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32369735

RESUMO

Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores Etários , Envelhecimento/genética , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
7.
Cell Metab ; 29(5): 1078-1091.e5, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827863

RESUMO

The alignment of fasting and feeding with the sleep/wake cycle is coordinated by hypothalamic neurons, though the underlying molecular programs remain incompletely understood. Here, we demonstrate that the clock transcription pathway maximizes eating during wakefulness and glucose production during sleep through autonomous circadian regulation of NPY/AgRP neurons. Tandem profiling of whole-cell and ribosome-bound mRNAs in morning and evening under dynamic fasting and fed conditions identified temporal control of activity-dependent gene repertoires in AgRP neurons central to synaptogenesis, bioenergetics, and neurotransmitter and peptidergic signaling. Synaptic and circadian pathways were specific to whole-cell RNA analyses, while bioenergetic pathways were selectively enriched in the ribosome-bound transcriptome. Finally, we demonstrate that the AgRP clock mediates the transcriptional response to leptin. Our results reveal that time-of-day restriction in transcriptional control of energy-sensing neurons underlies the alignment of hunger and food acquisition with the sleep/wake state.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fome/fisiologia , Neurônios/metabolismo , Transcrição Gênica/genética , Proteína Relacionada com Agouti/genética , Animais , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Redes Reguladoras de Genes , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , Sono/fisiologia , Transcriptoma , Vigília/fisiologia
8.
Genes Dev ; 32(21-22): 1367-1379, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366905

RESUMO

The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the Period, Cryptochrome, and Rev-erb genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.


Assuntos
Ritmo Circadiano/genética , NF-kappa B/fisiologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Comportamento Animal , Proteínas CLOCK/metabolismo , Linhagem Celular , Cromatina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica
9.
Science ; 350(6261): aac4250, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542580

RESUMO

The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic ß cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that ß cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.


Assuntos
Ritmo Circadiano/genética , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exocitose/genética , Intolerância à Glucose , Proteínas de Homeodomínio/metabolismo , Humanos , Secreção de Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transativadores/metabolismo , Transcrição Gênica
10.
Science ; 342(6158): 1243417, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24051248

RESUMO

Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD(+)-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD(+) supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD(+) bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.


Assuntos
Relógios Circadianos/fisiologia , Metabolismo Energético , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Acetilação , Animais , Relógios Circadianos/genética , Jejum , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Consumo de Oxigênio , Sirtuína 3/genética , Sirtuína 3/metabolismo
11.
Elife ; 2: e00426, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23580255

RESUMO

Genetic and molecular approaches have been critical for elucidating the mechanism of the mammalian circadian clock. Here, we demonstrate that the ClockΔ19 mutant behavioral phenotype is significantly modified by mouse strain genetic background. We map a suppressor of the ClockΔ19 mutation to a ∼900 kb interval on mouse chromosome 1 and identify the transcription factor, Usf1, as the responsible gene. A SNP in the promoter of Usf1 causes elevation of its transcript and protein in strains that suppress the Clock mutant phenotype. USF1 competes with the CLOCK:BMAL1 complex for binding to E-box sites in target genes. Saturation binding experiments demonstrate reduced affinity of the CLOCKΔ19:BMAL1 complex for E-box sites, thereby permitting increased USF1 occupancy on a genome-wide basis. We propose that USF1 is an important modulator of molecular and behavioral circadian rhythms in mammals. DOI:http://dx.doi.org/10.7554/eLife.00426.001.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Relógios Circadianos , Ritmo Circadiano , DNA/metabolismo , Mutação , Fatores Estimuladores Upstream/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Sítios de Ligação , Ligação Competitiva , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Elementos E-Box , Regulação da Expressão Gênica , Genótipo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/metabolismo , Transdução de Sinais , Especificidade da Espécie , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional , Fatores Estimuladores Upstream/genética
12.
Nature ; 466(7306): 627-31, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20562852

RESUMO

The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and although rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism and insulin signalling is delayed in circadian mutant mice, and both Clock and Bmal1 (also called Arntl) mutants show impaired glucose tolerance, reduced insulin secretion and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival and synaptic vesicle assembly. Notably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective beta-cell function at the very latest stage of stimulus-secretion coupling. These results demonstrate a role for the beta-cell clock in coordinating insulin secretion with the sleep-wake cycle, and reveal that ablation of the pancreatic clock can trigger the onset of diabetes mellitus.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , Diabetes Mellitus/metabolismo , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Glicemia/análise , Glicemia/metabolismo , Proteínas CLOCK/deficiência , Proteínas CLOCK/metabolismo , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Ritmo Circadiano/genética , Diabetes Mellitus/genética , Perfilação da Expressão Gênica , Intolerância à Glucose/genética , Teste de Tolerância a Glucose , Técnicas In Vitro , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Camundongos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fenótipo , Sono/genética , Sono/fisiologia , Vesículas Sinápticas/metabolismo , Vigília/genética , Vigília/fisiologia
13.
Proc Natl Acad Sci U S A ; 107(18): 8399-403, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404168

RESUMO

Most laboratory mouse strains including C57BL/6J do not produce detectable levels of pineal melatonin owing to deficits in enzymatic activity of arylalkylamine N-acetyltransferase (AANAT) and N-acetylserotonin O-methyl transferase (ASMT), two enzymes necessary for melatonin biosynthesis. Here we report that alleles segregating at these two loci in C3H/HeJ mice, an inbred strain producing melatonin, suppress the circadian period-lengthening effect of the Clock mutation. Through a functional mapping approach, we localize mouse Asmt to chromosome X and show that it, and the Aanat locus on chromosome 11, are significantly associated with pineal melatonin levels. Treatment of suprachiasmatic nucleus (SCN) explant cultures from Period2(Luciferase) (Per2(Luc)) Clock/+ reporter mice with melatonin, or the melatonin agonist, ramelteon, phenocopies the genetic suppression of the Clock mutant phenotype observed in living animals. These results demonstrate that melatonin suppresses the Clock/+ mutant phenotype and interacts with Clock to affect the mammalian circadian system.


Assuntos
Proteínas CLOCK/metabolismo , Ritmo Circadiano , Regulação para Baixo , Melatonina/biossíntese , Mutação , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Comportamento Animal , Proteínas CLOCK/genética , Cromossomos , Camundongos , Camundongos Endogâmicos C3H , Fenótipo
14.
Vis Neurosci ; 24(1): 111-23, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17430614

RESUMO

We performed genome-wide chemical mutagenesis of C57BL/6J mice using N-ethyl-N-nitrosourea (ENU). Electroretinographic screening of the third generation offspring revealed two G3 individuals from one G1 family with a normal a-wave but lacking the b-wave that we named nob4. The mutation was transmitted with a recessive mode of inheritance and mapped to chromosome 11 in a region containing the Grm6 gene, which encodes a metabotropic glutamate receptor protein, mGluR6. Sequencing confirmed a single nucleotide substitution from T to C in the Grm6 gene. The mutation is predicted to result in substitution of Pro for Ser at position 185 within the extracellular, ligand-binding domain and oocytes expressing the homologous mutation in mGluR6 did not display robust glutamate-induced currents. Retinal mRNA levels for Grm6 were not significantly reduced, but no immunoreactivity for mGluR6 protein was found. Histological and fundus evaluations of nob4 showed normal retinal morphology. In contrast, the mutation has severe consequences for visual function. In nob4 mice, fewer retinal ganglion cells (RGCs) responded to the onset (ON) of a bright full field stimulus. When ON responses could be evoked, their onset was significantly delayed. Visual acuity and contrast sensitivity, measured with optomotor responses, were reduced under both photopic and scotopic conditions. This mutant will be useful because its phenotype is similar to that of human patients with congenital stationary night blindness and will provide a tool for understanding retinal circuitry and the role of ganglion cell encoding of visual information.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptores de Glutamato Metabotrópico/genética , Animais , Mapeamento Cromossômico , Escuridão , Eletrorretinografia/métodos , Etilnitrosoureia/farmacologia , Angiofluoresceinografia , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Mutagênicos , Mutação , RNA Mensageiro/genética , Retina/fisiologia
15.
Vis Neurosci ; 22(5): 619-29, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16332273

RESUMO

We performed genome-wide mutagenesis of C57BL/6J mice using the mutagen N-ethyl-N-nitrosourea (ENU) and screened the third generation (G3) offspring for visual system alterations using electroretinography and fundus photography. Several mice in one pedigree showed characteristics of retinal degeneration when tested at 12-14 weeks of age: no recordable electroretinogram (ERG), attenuation of retinal vessels, and speckled pigmentation of the fundus. Histological studies showed that the retinas undergo a photoreceptor degeneration with apoptotic loss of outer nuclear layer nuclei but visual acuity measured using the optomotor response under photopic conditions persists in spite of considerable photoreceptor loss. The Noerg-1 mutation showed an autosomal dominant pattern of inheritance in progeny. Studies in early postnatal mice showed degeneration to occur after formation of partially functional rods. The Noerg-1 mutation was mapped genetically to chromosome 6 by crossing C57BL/6J mutants with DBA/2J or BALB/cJ mice to produce an N2 generation and then determining the ERG phenotypes and the genotypes of the N2 offspring at multiple loci using SSLP and SNP markers. Fine mapping was accomplished with a set of closely spaced markers. A non-recombinant region from 112.8 Mb to 115.1 Mb was identified, encompassing the rhodopsin (Rho) coding region. A single nucleotide transition from G to A was found in the Rho gene that is predicted to result in a substitution of Tyr for Cys at position 110, in an intradiscal loop. This mutation has been found in patients with autosomal dominant retinitis pigmentosa (RP) and results in misfolding of rhodopsin expressed in vitro. Thus, ENU mutagenesis is capable of replicating mutations that occur in human patients and is useful for generating de novo models of human inherited eye disease. Furthermore, the availability of the mouse genomic sequence and extensive DNA polymorphisms made the rapid identification of this gene possible, demonstrating that the use of ENU-induced mutations for functional gene identification is now practical for individual laboratories.


Assuntos
Mutação/genética , Rodopsina/genética , Substituição de Aminoácidos , Animais , Western Blotting , Mapeamento Cromossômico , Clonagem Molecular , DNA/biossíntese , DNA/genética , Eletrorretinografia , Etilnitrosoureia/farmacologia , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/farmacologia , Músculos Oculomotores/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Retina/anormalidades , Degeneração Retiniana/genética , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...