Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 67(5): 286-290, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982733

RESUMO

The coherency of a 1.2-MV transmission electron microscope was evaluated through illumination semiangles calculated from lengths over which Fresnel fringes can be observed. These lengths were determined from the diameters of circular holes fully filled with Fresnel fringes, i.e. this method allows lengths to be accurately measured even if micrographs are subjected to distortions. The smallest illumination semiangle of 4.0 × 10-9 rad was obtained for a circular hole with a diameter of 191 µm. In addition, electron beam brightness was estimated to be approximately 3 × 1014 A/m2·sr from the obtained illumination semiangle values and current densities. The results provide us with essential information that can be referred to in future electron holography studies aimed at detecting weak electromagnetic fields in materials.

2.
Microscopy (Oxf) ; 65(4): 378-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27013274

RESUMO

Information transfer of a 1-MV field-emission transmission electron microscope (TEM) was improved by reducing mechanical vibrations and improving the stability of an acceleration voltage. The resulting mechanical stability was estimated from lattice fringes with an obtained spacing of 19.6 pm under achromatic conditions. This value corresponds to a vibration amplitude of <19.6 pm. The stability of the acceleration voltage was improved by reducing thermal noises in the power supply. As a result, 39.2-pm-spacing linear lattice fringes were obtained under chromatic conditions. This indicates that 25.5 nm(-1) information transfer was accomplished in the 1 MV field-emission TEM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...