Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(11): e9458, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381394

RESUMO

Agriculture is a leading cause of biodiversity loss and significantly impacts freshwater biodiversity through many stressors acting locally and on the landscape scale. The individual effects of these numerous stressors are often difficult to disentangle and quantify, as they might have nonlinear impacts on biodiversity. Within agroecosystems, ponds are biodiversity hotspots providing habitat for many freshwater species and resting or feeding places for terrestrial organisms. Ponds are strongly influenced by their terrestrial surroundings, and understanding the determinants of biodiversity in agricultural landscapes remains difficult but crucial for improving conservation policies and actions. We aimed to identify the main effects of environmental and spatial variables on α-, ß-, and γ-diversities of macroinvertebrate communities inhabiting ponds (n = 42) in an agricultural landscape in the Northeast Germany, and to quantify the respective roles of taxonomic turnover and nestedness in the pondscape. We disentangled the nonlinear effects of a wide range of environmental and spatial variables on macroinvertebrate α- and ß-biodiversity. Our results show that α-diversity is impaired by eutrophication (phosphate and nitrogen) and that overshaded ponds support impoverished macroinvertebrate biota. The share of arable land in the ponds' surroundings decreases ß-diversity (i.e., dissimilarity in community), while ß-diversity is higher in shallower ponds. Moreover, we found that ß-diversity is mainly driven by taxonomic turnover and that ponds embedded in arable fields support local and regional diversity. Our findings highlight the importance of such ponds for supporting biodiversity, identify the main stressors related to human activities (eutrophication), and emphasize the need for a large number of ponds in the landscape to conserve biodiversity. Small freshwater systems in agricultural landscapes challenge us to compromise between human demands and nature conservation worldwide. Identifying and quantifying the effects of environmental variables on biodiversity inhabiting those ecosystems can help address threats impacting freshwater life with more effective management of pondscapes.

2.
Mol Ecol ; 31(6): 1716-1734, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35028982

RESUMO

Changes in land use and agricultural intensification threaten biodiversity and ecosystem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricultural landscape in northeastern Germany using landscape-scale metatranscriptomics to understand the responses of active bacterial, archaeal and eukaryotic communities to land-use type. These KH are proxies of the millions of small standing water bodies of glacial origin spread across the northern hemisphere. Like other landscapes in Europe, the study area has been used for intensive agriculture since the 1950s. In contrast to a parallel environmental DNA study that suggests the homogenization of biodiversity across KH, conceivably resulting from long-lasting intensive agriculture, land-use type affected the structure of the active KH communities during spring crop fertilization, but not a month later. This effect was more pronounced for eukaryotes than for bacteria. In contrast, gene expression patterns did not differ between months or across land-use types, suggesting a high degree of functional redundancy across the KH communities. Variability in gene expression was best explained by active bacterial and eukaryotic community structures, suggesting that these changes in functioning are primarily driven by interactions between organisms. Our results indicate that influences of the surrounding landscape result in temporary changes in the activity of different community members. Thus, even in KH where biodiversity has been homogenized, communities continue to respond to land management. This potential needs to be considered when developing sustainable management options for restoration purposes and for successful mitigation of further biodiversity loss in agricultural landscapes.


Assuntos
Ecossistema , Lagoas , Agricultura/métodos , Archaea/genética , Biodiversidade
3.
Sci Total Environ ; 814: 151925, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34838923

RESUMO

Despite substantial advances in quantifying greenhouse gas (GHG) emissions from dry inland waters, existing estimates mainly consist of carbon dioxide (CO2) emissions. However, methane (CH4) may also be relevant due to its higher Global Warming Potential (GWP). We report CH4 emissions from dry inland water sediments to i) provide a cross-continental estimate of such emissions for different types of aquatic systems (i.e., lakes, ponds, reservoirs, and streams) and climate zones (i.e., tropical, continental, and temperate); and ii) determine the environmental factors that control these emissions. CH4 emissions from dry inland waters were consistently higher than emissions observed in adjacent uphill soils, across climate zones and in all aquatic systems except for streams. However, the CH4 contribution (normalized to CO2 equivalents; CO2-eq) to the total GHG emissions of dry inland waters was similar for all types of aquatic systems and varied from 10 to 21%. Although we discuss multiple controlling factors, dry inland water CH4 emissions were most strongly related to sediment organic matter content and moisture. Summing CO2 and CH4 emissions revealed a cross-continental average emission of 9.6 ± 17.4 g CO2-eq m-2 d-1 from dry inland waters. We argue that increasing droughts likely expand the worldwide surface area of atmosphere-exposed aquatic sediments, thereby increasing global dry inland water CH4 emissions. Hence, CH4 cannot be ignored if we want to fully understand the carbon (C) cycle of dry sediments.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Lagos , Metano/análise , Óxido Nitroso/análise , Rios
4.
PLoS One ; 16(12): e0260163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890389

RESUMO

Conferences are ideal platforms for studying gender gaps in science because they are important cultural events that reflect barriers to women in academia. Here, we explored women's participation in ecology conferences by analyzing female representation, behavior, and personal experience at the 1st Meeting of the Iberian Society of Ecology (SIBECOL). The conference had 722 attendees, 576 contributions, and 27 scientific sessions. The gender of attendees and presenters was balanced (48/52% women/men), yet only 29% of the contributions had a woman as last author. Moreover, men presented most of the keynote talks (67%) and convened most of the sessions. Our results also showed that only 32% of the questions were asked by women, yet the number of questions raised by women increased when the speaker or the convener was a woman. Finally, the post-conference survey revealed that attendees had a good experience and did not perceive the event as a threatening context for women. Yet, differences in the responses between genders suggest that women tended to have a worse experience than their male counterparts. Although our results showed clear gender biases, most of the participants of the conference failed to detect it. Overall, we highlight the challenge of increasing women's scientific leadership, visibility and interaction in scientific conferences and we suggest several recommendations for creating inclusive meetings, thereby promoting equal opportunities for all participants.


Assuntos
Ecologia/métodos , Comportamento , Feminino , Humanos , Liderança , Masculino , Percepção , Sexismo
5.
J Plankton Res ; 43(3): 396-412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084088

RESUMO

Understanding the influence of environmental and spatial factors on the structure of aquatic communities remains a major challenge in community ecology. This study aims to identify main drivers of rotifer abundance and diversity in ponds embedded in an intensive agricultural landscape in Northeast Germany. We studied 42 ponds of glacial origin (kettle holes) covering a wide range of environmental parameters. The predominant factors structuring the rotifer metacommunity shifted from abiotic environmental filtering in spring to unstudied factors in autumn, while spatial factors remained less important. Fertilizer-driven salinization, internal nutrient recycling, primary productivity and sediment phosphorus release were the prevalent biogeochemical processes in the ponds. Both fertilizer-driven salinization and primary productivity negatively affected rotifer alpha diversity, and positively affected beta diversity. This impact was lower in forest ponds than in those surrounded by arable fields or grassland. However, rotifer diversity did not significantly differ among land-use categories. Our results indicate that the long-term impact of intensive agriculture in the region and the associated widespread eutrophication overrides the direct influence of land use on rotifer diversity but point to an indirect effect via fertilizer-driven salinization. Furthermore, this study highlights the role of ponds in enhancing regional biodiversity in agricultural landscapes.

6.
PLoS One ; 14(11): e0225438, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31756202

RESUMO

Urbanization is driving the transformation of natural and rural ecosystems worldwide by affecting both the abiotic environment and the biota. This raises the question whether urban ecosystems are able to provide services in a comparable way to their non-urban counterparts. In urban grasslands, the effects of urbanization-driven ecological novelty and the role of plant diversity in modulating ecosystem functioning have received little attention. In this study, we assessed the influence of biodiversity, abiotic and biotic novelty on ecosystem functioning based on in situ measurements in non-manipulated grasslands along an urbanization gradient in Berlin (Germany). We focused on plant aboveground biomass (AGB), intrinsic water-use efficiency (iWUE) and 15N enrichment factor (Δδ15N) as proxies for biomass production, water and N cycling, respectively, within grassland communities, and tested how they change with plant biogeographic status (native vs alien), functional group and species identity. Approximately one third of the forb species were alien to Berlin and they were responsible for 13.1% of community AGB. Community AGB was positively correlated with plant-species richness. In contrast, iWUE and Δδ15N were mostly determined by light availability (depicted by sky view factor) and urban parameters like the percentage of impervious surface or human population density. We found that abiotic novelty potentially favors aliens in Berlin, mainly by enhancing their dispersal and fitness under drought. Mainly urban parameters indicating abiotic novelty were significantly correlated to both alien and native Δδ15N, but to AGB and iWUE of alien plants only, pointing to a stronger impact of abiotic novelty on N cycling compared to C and water cycling. At the species level, sky view factor appeared to be the prevailing driver of photosynthetic performance and resource-use efficiency. Although we identified a significant impact of abiotic novelty on AGB, iWUE and Δδ15N at different levels, the relationship between species richness and community AGB found in the urban grasslands studied in Berlin was comparable to that described in non-urban experimental grasslands in Europe. Hence, our results indicate that conserving and enhancing biodiversity in urban ecosystems is essential to preserve ecosystem services related to AGB production. For ensuring the provision of ecosystem services associated to water and N use, however, changes in urban abiotic parameters seem necessary.


Assuntos
Biodiversidade , Pradaria , Plantas/metabolismo , Biomassa , Clorofila A/química , Clorofila A/metabolismo , Alemanha , Ciclo do Nitrogênio , Desenvolvimento Vegetal , Estações do Ano , Solo/química , Urbanização , Água/metabolismo
7.
Bioscience ; 69(11): 888-899, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31719711

RESUMO

Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.

8.
Sci Total Environ ; 634: 1615-1630, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710657

RESUMO

Kettle holes, small shallow ponds of glacial origin, represent hotspots for biodiversity and biogeochemical cycling. They abound in the young moraine landscape of Northeast Germany, potentially modulating element fluxes in a region where intensive agriculture prevails. The Rittgarten kettle hole, with semi-permanent hydroperiod and a surrounding reed belt, can be considered as a representative case study for such systems. Aiming to provide insights into the biogeochemical processes driving nutrient and primary producer dynamics in the Rittgarten kettle hole, we developed a mechanistic model that simulates the carbon, nitrogen, phosphorus and oxygen, phytoplankton, and free-floating macrophyte biomass dynamics. After model calibration and sensitivity analysis, our modeling exercise quantified the simulated nutrient fluxes associated with all the major biogeochemical processes considered by the model. Seasonality of nutrient concentrations, magnitude of primary productivity rates, and biogeochemical process characterization in the pond were reasonably reproduced by the model from July 2013 to July 2014. Our results suggest that the establishment of a phytoplankton community well-adapted to low light availability, together with the differential use of N and P from free-floating macrophytes and phytoplankton can explain their coexistence in kettle holes. Sediment nutrient release along with decomposition of decaying submerged macrophyte are essential drivers of internal nutrient cycling in kettle holes. Our results also suggest that the Rittgarten kettle hole act as a net source of CO2 to the atmosphere on an annual scale, which offers a testable hypothesis for kettle holes with structural and functional similarities. We conclude by discussing the need to shed light on the effects of water level fluctuations on nutrient dynamics and biological succession patterns, as well as the relative importance of external sources and internal nutrient recycling mechanisms.

10.
Environ Pollut ; 159(10): 2350-4, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21733606

RESUMO

With rising concentrations of both atmospheric carbon dioxide (CO(2)) and tropospheric ozone (O(3)), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO(2) and O(3), singly and in combination, on the primary short-term stomatal response to CO(2) concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO(2) and/or O(3) exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO(2) concentration from current ambient level. The impairement of the stomatal CO(2) response by O(3) most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO(2) may not hold for northern hardwood forests under concurrently rising tropospheric O(3).


Assuntos
Poluentes Atmosféricos/toxicidade , Dióxido de Carbono/toxicidade , Ozônio/toxicidade , Estômatos de Plantas/efeitos dos fármacos , Árvores/efeitos dos fármacos , Betula/efeitos dos fármacos , Betula/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...