Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 10(6): 16, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34111262

RESUMO

Purpose: Microperimetry measures differential light sensitivity (DLS) at specific retinal locations. The aim of this study is to examine the variation in DLS across the macula and the contribution to this variation of cone distribution metrics and retinal eccentricity. Methods: Forty healthy eyes of 40 subjects were examined by microperimetry (MAIA) and adaptive optics imaging (rtx1). Retinal DLS was measured using the grid patterns: foveal (2°-3°), macular (3°-7°), and meridional (2°-8° on horizontal and vertical meridians). Cone density (CD), distribution regularity, and intercone distance (ICD) were calculated at the respective test loci coordinates. Linear mixed-effects regression was used to examine the association between cone distribution metrics and loci eccentricity, and retinal DLS. Results: An eccentricity-dependent reduction in DLS was observed on all MAIA grids, which was greatest at the foveal-parafoveal junction (2°-3°) (-0.58 dB per degree, 95% confidence interval [CI]; -0.91 to -0.24 dB, P < 0.01). Retinal DLS across the meridional grid changed significantly with each 1000 cells/deg2 change in CD (0.85 dB, 95% CI; 0.10 to 1.61 dB, P = 0.03), but not with each arcmin change in ICD (1.36 dB, 95% CI; -2.93 to 0.20 dB, P = 0.09). Conclusions: We demonstrate significant variation in DLS across the macula. Topographical change in cone separation is an important determinant of the variation in DLS at the foveal-parafoveal junction. We caution the extrapolation of changes in DLS measurements to cone distribution because the relationship between these variables is complex. Translational Relevance: Cone density is an independent determinant of DLS in the foveal-parafoveal junction in healthy eyes.


Assuntos
Fotofobia , Células Fotorreceptoras Retinianas Cones , Contagem de Células , Voluntários Saudáveis , Humanos , Acuidade Visual
2.
G3 (Bethesda) ; 9(12): 3995-4005, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31570502

RESUMO

Apoptosis is the primary cause of degeneration in a number of neuronal, muscular, and metabolic disorders. These diseases are subject to a great deal of phenotypic heterogeneity in patient populations, primarily due to differences in genetic variation between individuals. This creates a barrier to effective diagnosis and treatment. Understanding how genetic variation influences apoptosis could lead to the development of new therapeutics and better personalized treatment approaches. In this study, we examine the impact of the natural genetic variation in the Drosophila Genetic Reference Panel (DGRP) on two models of apoptosis-induced retinal degeneration: overexpression of p53 or reaper (rpr). We identify a number of known apoptotic, neural, and developmental genes as candidate modifiers of degeneration. We also use Gene Set Enrichment Analysis (GSEA) to identify pathways that harbor genetic variation that impact these apoptosis models, including Wnt signaling, mitochondrial metabolism, and redox homeostasis. Finally, we demonstrate that many of these candidates have a functional effect on apoptosis and degeneration. These studies provide a number of avenues for modifying genes and pathways of apoptosis-related disease.


Assuntos
Apoptose/genética , Drosophila/genética , Variação Genética , Homeostase/genética , Mitocôndrias/metabolismo , Via de Sinalização Wnt/genética , Animais , Proteínas de Drosophila/genética , Olho/anatomia & histologia , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Tamanho do Órgão/genética , Oxirredução , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA