Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 34(9): 2340-2354, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541477

RESUMO

Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Poaceae/genética , Sequência de Aminoácidos/genética , Núcleo Celular/genética , Evolução Molecular , Conversão Gênica/genética , Genes Mitocondriais/genética , Genes de Plantas , Genoma Mitocondrial , Magnoliopsida/genética , Filogenia , Proteínas de Plantas/genética , Pseudogenes/genética , Edição de RNA , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos
2.
BMC Genomics ; 9: 211, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18462506

RESUMO

BACKGROUND: Heterokont algae form a monophyletic group within the stramenopile branch of the tree of life. These organisms display wide morphological diversity, ranging from minute unicells to massive, bladed forms. Surprisingly, chloroplast genome sequences are available only for diatoms, representing two (Coscinodiscophyceae and Bacillariophyceae) of approximately 18 classes of algae that comprise this taxonomic cluster. A universal challenge to chloroplast genome sequencing studies is the retrieval of highly purified DNA in quantities sufficient for analytical processing. To circumvent this problem, we have developed a simplified method for sequencing chloroplast genomes, using fosmids selected from a total cellular DNA library. The technique has been used to sequence chloroplast DNA of two Heterosigma akashiwo strains. This raphidophyte has served as a model system for studies of stramenopile chloroplast biogenesis and evolution. RESULTS: H. akashiwo strain CCMP452 (West Atlantic) chloroplast DNA is 160,149 bp in size with a 21,822-bp inverted repeat, whereas NIES293 (West Pacific) chloroplast DNA is 159,370 bp in size and has an inverted repeat of 21,665 bp. The fosmid cloning technique reveals that both strains contain an isomeric chloroplast DNA population resulting from an inversion of their single copy domains. Both strains contain multiple small inverted and tandem repeats, non-randomly distributed within the genomes. Although both CCMP452 and NIES293 chloroplast DNAs contains 197 genes, multiple nucleotide polymorphisms are present in both coding and intergenic regions. Several protein-coding genes contain large, in-frame inserts relative to orthologous genes in other plastids. These inserts are maintained in mRNA products. Two genes of interest in H. akashiwo, not previously reported in any chloroplast genome, include tyrC, a tyrosine recombinase, which we hypothesize may be a result of a lateral gene transfer event, and an unidentified 456 amino acid protein, which we hypothesize serves as a G-protein-coupled receptor. The H. akashiwo chloroplast genomes share little synteny with other algal chloroplast genomes sequenced to date. CONCLUSION: The fosmid cloning technique eliminates chloroplast isolation, does not require chloroplast DNA purification, and reduces sequencing processing time. Application of this method has provided new insights into chloroplast genome architecture, gene content and evolution within the stramenopile cluster.


Assuntos
Genoma de Cloroplastos , Phaeophyceae/genética , Proteínas de Algas/genética , Sequência de Aminoácidos , Oceano Atlântico , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Sequência Conservada , DNA de Algas/genética , DNA de Algas/isolamento & purificação , DNA de Cloroplastos/genética , DNA de Cloroplastos/isolamento & purificação , Furanos , Dados de Sequência Molecular , Oceano Pacífico , Phaeophyceae/classificação , Phaeophyceae/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Recombinases/genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tiofenos
3.
BMC Evol Biol ; 6: 55, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16842621

RESUMO

BACKGROUND: Many mitochondrial genes, especially ribosomal protein genes, have been frequently transferred as functional entities to the nucleus during plant evolution, often by an RNA-mediated process. A notable case of transfer involves the rps14 gene of three grasses (rice, maize, and wheat), which has been relocated to the intron of the nuclear sdh2 gene and which is expressed and targeted to the mitochondrion via alternative splicing and usage of the sdh2 targeting peptide. Although this transfer occurred at least 50 million years ago, i.e., in a common ancestor of these three grasses, it is striking that expressed, nearly intact pseudogenes of rps14 are retained in the mitochondrial genomes of both rice and wheat. To determine how ancient this transfer is, the extent to which mitochondrial rps14 has been retained and is expressed in grasses, and whether other transfers of rps14 have occurred in grasses and their relatives, we investigated the structure, expression, and phylogeny of mitochondrial and nuclear rps14 genes from 32 additional genera of grasses and from 9 other members of the Poales. RESULTS: Filter hybridization experiments showed that rps14 sequences are present in the mitochondrial genomes of all examined Poales except for members of the grass subfamily Panicoideae (to which maize belongs). However, PCR amplification and sequencing revealed that the mitochondrial rps14 genes of all examined grasses (Poaceae), Cyperaceae, and Joinvilleaceae are pseudogenes, with all those from the Poaceae sharing two 4-NT frameshift deletions and all those from the Cyperaceae sharing a 5-NT insertion (only one member of the Joinvilleaceae was examined). cDNA analysis showed that all mitochondrial pseudogenes examined (from all three families) are transcribed, that most are RNA edited, and that surprisingly many of the edits are reverse (U-->C) edits. Putatively nuclear copies of rps14 were isolated from one to several members of each of these three Poales families. Multiple lines of evidence indicate that the nuclear genes are probably the products of three independent transfers. CONCLUSION: The rps14 gene has, most likely, been functionally transferred from the mitochondrion to the nucleus at least three times during the evolution of the Poales. The transfers in Cyperaceae and Poaceae are relatively ancient, occurring in the common ancestor of each family, roughly 80 million years ago, whereas the putative Joinvilleaceae transfer may be the most recent case of functional organelle-to-nucleus transfer yet described in any organism. Remarkably, nearly intact and expressed pseudogenes of rps14 have persisted in the mitochondrial genomes of most lineages of Poaceae and Cyperaceae despite the antiquity of the transfers and of the frameshift and RNA editing mutations that mark the mitochondrial genes as pseudogenes. Such long-term, nearly pervasive survival of expressed, apparent pseudogenes is to our knowledge unparalleled in any genome. Such survival probably reflects a combination of factors, including the short length of rps14, its location immediately downstream of rpl5 in most plants, and low rates of nucleotide substitutions and indels in plant mitochondrial DNAs. Their survival also raises the possibility that these rps14 sequences may not actually be pseudogenes despite their appearance as such. Overall, these findings indicate that intracellular gene transfer may occur even more frequently in angiosperms than already recognized and that pseudogenes in plant mitochondrial genomes can be surprisingly resistant to forces that lead to gene loss and inactivation.


Assuntos
Núcleo Celular/genética , Genes Mitocondriais , Poaceae/genética , Pseudogenes , Evolução Molecular , Genes de Plantas , Oryza/genética , Filogenia , Edição de RNA , Triticum/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...