Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 876202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721012

RESUMO

Alzheimer's disease (AD) is an irreversible neurological disorder that affects the vast majority of dementia cases, leading patients to experience gradual memory loss and cognitive function decline. Despite the lack of a cure, early detection of Alzheimer's disease permits the provision of preventive medication to slow the disease's progression. The objective of this project is to develop a computer-aided method based on a deep learning model to distinguish Alzheimer's disease (AD) from cognitively normal and its early stage, mild cognitive impairment (MCI), by just using structural MRI (sMRI). To attain this purpose, we proposed a multiclass classification method based on 3D T1-weight brain sMRI images from the ADNI database. Axial brain images were extracted from 3D MRI and fed into the convolutional neural network (CNN) for multiclass classification. Three separate models were tested: a CNN built from scratch, VGG-16, and ResNet-50. As a feature extractor, the VGG-16 and ResNet-50 convolutional bases trained on the ImageNet dataset were employed. To achieve classification, a new densely connected classifier was implemented on top of the convolutional bases.

2.
Biomech Model Mechanobiol ; 21(1): 261-275, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35079931

RESUMO

False lumen thrombosis (FLT) in type B aortic dissection has been associated with the progression of dissection and treatment outcome. Existing computational models mostly assume rigid wall behavior which ignores the effect of flap motion on flow and thrombus formation within the FL. In this study, we have combined a fully coupled fluid-structure interaction (FSI) approach with a shear-driven thrombosis model described by a series of convection-diffusion reaction equations. The integrated FSI-thrombosis model has been applied to an idealized dissection geometry to investigate the interaction between vessel wall motion and growing thrombus. Our simulation results show that wall compliance and flap motion can influence the progression of FLT. The main difference between the rigid and FSI models is the continuous development of vortices near the tears caused by drastic flap motion up to 4.45 mm. Flap-induced high shear stress and shear rates around tears help to transport activated platelets further to the neighboring region, thus speeding up thrombus formation during the accelerated phase in the FSI models. Reducing flap mobility by increasing the Young's modulus of the flap slows down the thrombus growth. Compared to the rigid model, the predicted thrombus volume is 25% larger using the FSI-thrombosis model with a relatively mobile flap. Furthermore, our FSI-thrombosis model can capture the gradual effect of thrombus growth on the flow field, leading to flow obstruction in the FL, increased blood viscosity and reduced flap motion. This model is a step closer toward simulating realistic thrombus growth in aortic dissection, by taking into account the effect of intimal flap and vessel wall motion.


Assuntos
Dissecção Aórtica , Trombose , Simulação por Computador , Humanos , Modelos Cardiovasculares , Estresse Mecânico
3.
Int J Numer Method Biomed Eng ; 36(12): e3399, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32862487

RESUMO

A monolithic, fully coupled fluid-structure interaction (FSI) computational framework was developed to account for dissection flap motion in acute type B aortic dissection (TBAD). Analysis of results included wall deformation, pressure, flow, wall shear stress (WSS), von Mises stress and comparison of hemodynamics between rigid wall and FSI models. Our FSI model mimicked realistic wall deformation that resulted in maximum compression of the distal true lumen (TL) by 21.4%. The substantial movement of intimal flap mostly affected flow conditions in the false lumen (FL). Flap motion facilitated more flow entering the FL at peak systole, with the TL to FL flow split changing from 88:12 in the rigid model to 83:17 in the FSI model. There was more disturbed flow in the FL during systole (5.8% FSI vs 5.2% rigid) and diastole (13.5% FSI vs 9.8% rigid), via a λ2 -criterion. The flap-induced disturbed flow near the tears in the FSI model caused an increase of local WSS by up to 70.0% during diastole. This resulted in a significant reduction in the size of low time-averaged WSS (TAWSS) regions in the FL (113.11 cm2 FSI vs 177.44 cm2 rigid). Moreover, the FSI model predicted lower systolic pressure, higher diastolic pressure, and hence lower pulse pressure. Our results provided new insights into the possible impact of flap motion on flow in aortic dissections, which are particularly important when evaluating hemodynamics of acute TBAD. NOVELTY STATEMENT: Our monolithic fully coupled FSI computational framework is able to reproduce experimentally measured range of flap deformation in aortic dissection, thereby providing novel insights into the influence of physiological flap motion on the flow and pressure distributions. The drastic flap movement increases the flow resistance in the true lumen and causes more disturbed flow in the false lumen, as visualized through the λ2 criterion. The flap-induced luminal pressure is dampened, thereby affecting pressure measures, which may serve as potential prognostic indicators for late complications in acute uncomplicated TBAD patients.


Assuntos
Dissecção Aórtica , Modelos Cardiovasculares , Simulação por Computador , Hemodinâmica , Humanos , Estresse Mecânico
4.
Prosthet Orthot Int ; 43(1): 62-70, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30051756

RESUMO

BACKGROUND:: The current method of prescribing composite running-specific energy-storing-and-returning feet is subjective and is based only on the amputee's static body weight/mass. OBJECTIVES:: The aim was to investigate their dynamic characteristics and create a relationship between these dynamic data and the prescription of foot. STUDY DESIGN:: Experimental Assessment. METHODS:: This article presents the modal analysis results of the full range of Össur Flex-Run™ running feet that are commercially available (1LO-9LO) using experimental modal analysis technique under a constant mass at 53 kg and boundary condition. RESULTS:: It was shown that both the undamped natural frequency and stiffness increase linearly from the lowest to the highest stiffness category of foot which allows for a more informed prescription of foot when tuning to a matched natural frequency. The low damping characteristics determined experimentally that ranged between 1.5% and 2.0% indicates that the feet require less input energy to maintain the steady-state cyclic motion before take-off from the ground. An analysis of the mode shapes also showed a unique design feature of these feet that is hypothesised to enhance their performance. CONCLUSION:: A better understanding of dynamic characteristics of the feet can help tune the feet to the user's requirements in promoting a better gait performance. CLINICAL RELEVANCE: The dynamic data determined from this study are needed to better inform the amputees in predicting the natural frequency of the foot prescribed. The amputees can intuitively tune the cyclic body rhythm during walking or running to match with the natural frequency. This could eventually promote a better gait performance.


Assuntos
Amputados/reabilitação , Membros Artificiais , Pé/cirurgia , Desenho de Prótese/métodos , Amputação Cirúrgica/métodos , Fenômenos Biomecânicos , Metabolismo Energético/fisiologia , Humanos , Teste de Materiais/métodos , Modelos Anatômicos , Fatores de Risco , Corrida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...