Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Curr Biol ; 33(8): 1573-1581.e5, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36931272

RESUMO

Despite its crucial location, the western side of Amazonia between the Andes and the source(s) of the Amazon River is still understudied from a genomic and archaeogenomic point of view, albeit possibly harboring essential information to clarify the complex genetic history of local Indigenous groups and their interactions with nearby regions,1,2,3,4,5,6,7,8 including central America and the Caribbean.9,10,11,12 Focusing on this key region, we analyzed the genome-wide profiles of 51 Ashaninka individuals from Amazonian Peru, observing an unexpected extent of genomic variation. We identified at least two Ashaninka subgroups with distinctive genomic makeups, which were differentially shaped by the degree and timing of external admixtures, especially with the Indigenous groups from the Andes and the Pacific coast. On a continental scale, Ashaninka ancestors probably derived from a south-north migration of Indigenous groups moving into the Amazonian rainforest from a southeastern area with contributions from the Southern Cone and the Atlantic coast. These ancestral populations diversified in the variegated geographic regions of interior South America, on the eastern side of the Andes, differentially interacting with surrounding coastal groups. In this complex scenario, we also revealed strict connections between the ancestors of present-day Ashaninka, who belong to the Arawakan language family,13 and those Indigenous groups that moved further north into the Caribbean, contributing to the early Ceramic (Saladoid) tradition in the islands.14,15.


Assuntos
Etnicidade , Genética Populacional , Humanos , Peru , América do Sul , Etnicidade/genética , Genômica
2.
Genomics ; 114(4): 110405, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35709925

RESUMO

Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.


Assuntos
DNA Antigo , Genoma Humano , Arqueologia , Humanos , Irã (Geográfico) , Itália
3.
Eur J Hum Genet ; 30(3): 307-319, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33753911

RESUMO

Recent studies have showed the diverse genetic architecture of the highly consanguineous populations inhabiting the Arabian Peninsula. Consanguinity coupled with heterogeneity is complex and makes it difficult to understand the bases of population-specific genetic diseases in the region. Therefore, comprehensive genetic characterization of the populations at the finest scale is warranted. Here, we revisit the genetic structure of the Kuwait population by analyzing genome-wide single nucleotide polymorphisms data from 583 Kuwaiti individuals sorted into three subgroups. We envisage a diverse demographic genetic history among the three subgroups based on drift and allelic sharing with modern and ancient individuals. Furthermore, our comprehensive haplotype-based analyses disclose a high genetic heterogeneity among the Kuwaiti populations. We infer the major sources of ancestry within the newly defined groups; one with an obvious predominance of sub-Saharan/Western Africa mostly comprising Kuwait-B individuals, and other with West Eurasia including Kuwait-P and Kuwait-S individuals. Overall, our results recapitulate the historical population movements and reaffirm the genetic imprints of the legacy of continental trading in the region. Such deciphering of fine-scale population structure and their regional genetic heterogeneity would provide clues to the uncharted areas of disease-gene discovery and related associations in populations inhabiting the Arabian Peninsula.


Assuntos
Heterogeneidade Genética , Polimorfismo de Nucleotídeo Único , Consanguinidade , Variação Genética , Genética Populacional , Haplótipos , Humanos , Kuweit
4.
Genes (Basel) ; 12(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680976

RESUMO

A general imbalance in the proportion of disembarked males and females in the Americas has been documented during the Trans-Atlantic Slave Trade and the Colonial Era and, although less prominent, more recently. This imbalance may have left a signature on the genomes of modern-day populations characterised by high levels of admixture. The analysis of the uniparental systems and the evaluation of continental proportion ratio of autosomal and X chromosomes revealed a general sex imbalance towards males for European and females for African and Indigenous American ancestries. However, the consistency and degree of this imbalance are variable, suggesting that other factors, such as cultural and social practices, may have played a role in shaping it. Moreover, very few investigations have evaluated the sex imbalance using haplotype data, containing more critical information than genotypes. Here, we analysed genome-wide data for more than 5000 admixed American individuals to assess the presence, direction and magnitude of sex-biased admixture in the Americas. For this purpose, we applied two haplotype-based approaches, ELAI and NNLS, and we compared them with a genotype-based method, ADMIXTURE. In doing so, besides a general agreement between methods, we unravelled that the post-colonial admixture dynamics show higher complexity than previously described.


Assuntos
Genética Populacional , Haplótipos/genética , Migração Humana , Negro ou Afro-Americano/genética , América , Cromossomos Humanos X/genética , Feminino , Genótipo , Humanos , Masculino , Herança Materna/genética , Herança Paterna/genética , População Branca/genética
6.
Hum Mol Genet ; 30(22): 2123-2134, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196708

RESUMO

American populations are one of the most interesting examples of recently admixed groups, where ancestral components from three major continental human groups (Africans, Eurasians and Native Americans) have admixed within the last 15 generations. Recently, several genetic surveys focusing on thousands of individuals shed light on the geography, chronology and relevance of these events. However, even though gene flow could drive adaptive evolution, it is unclear whether and how natural selection acted on the resulting genetic variation in the Americas. In this study, we analysed the patterns of local ancestry of genomic fragments in genome-wide data for ~ 6000 admixed individuals from 10 American countries. In doing so, we identified regions characterized by a divergent ancestry profile (DAP), in which a significant over or under ancestral representation is evident. Our results highlighted a series of genomic regions with DAPs associated with immune system response and relevant medical traits, with the longest DAP region encompassing the human leukocyte antigen locus. Furthermore, we found that DAP regions are enriched in genes linked to cancer-related traits and autoimmune diseases. Then, analysing the biological impact of these regions, we showed that natural selection could have acted preferentially towards variants located in coding and non-coding transcripts and characterized by a high deleteriousness score. Taken together, our analyses suggest that shared patterns of post admixture adaptation occurred at a continental scale in the Americas, affecting more often functional and impactful genomic variants.


Assuntos
Genética Populacional , Genoma Humano , Genômica , Grupos Raciais/genética , Seleção Genética , América , Simulação por Computador , Genômica/métodos , Humanos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
7.
Hum Genet ; 140(12): 1651-1661, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34047840

RESUMO

Puberty is a complex developmental process that varies considerably among individuals and populations. Genetic factors explain a large proportion of the variability of several pubertal traits. Recent genome-wide association studies (GWAS) have identified hundreds of variants involved in traits that result from body growth, like adult height. However, they do not capture many genetic loci involved in growth changes over distinct growth phases. Further, such GWAS have been mostly performed in Europeans, but it is unknown how these findings relate to other continental populations. In this study, we analyzed the genetic basis of three pubertal traits; namely, peak height velocity (PV), age at PV (APV) and height at APV (HAPV). We analyzed a cohort of 904 admixed Chilean children and adolescents with European and Mapuche Native American ancestries. Height was measured on roughly a [Formula: see text]month basis from childhood to adolescence between 2006 and 2019. We predict that, in average, HAPV is 4.3 cm higher in European than in Mapuche adolescents (P = 0.042), and APV is 0.73 years later in European compared with Mapuche adolescents (P = 0.023). Further, by performing a GWAS on 774, 433 single-nucleotide polymorphisms, we identified a genetic signal harboring 3 linked variants significantly associated with PV in boys (P [Formula: see text]). This signal has never been associated with growth-related traits.


Assuntos
Indígenas Sul-Americanos/genética , Puberdade/genética , Adolescente , Desenvolvimento do Adolescente , Adulto , Envelhecimento/genética , Estatura/genética , Chile , Estudos de Coortes , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , População Branca/genética
8.
Cell ; 184(7): 1706-1723.e24, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33761327

RESUMO

The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , Arqueologia , Genômica/métodos , Indígena Americano ou Nativo do Alasca/classificação , DNA Mitocondrial/genética , Variação Genética , Genoma Humano , Haplótipos , Humanos , Filogenia
9.
Genome Biol Evol ; 13(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33585906

RESUMO

Contemporary individuals are the combination of genetic fragments inherited from ancestors belonging to multiple populations, as the result of migration and admixture. Isolating and characterizing these layers are crucial to the understanding of the genetic history of a given population. Ancestry deconvolution approaches make use of a large amount of source individuals, therefore constraining the performance of Local Ancestry Inferences when only few genomes are available from a given population. Here we present WINC, a local ancestry framework derived from the combination of ChromoPainter and NNLS approaches, as a method to retrieve local genetic assignments when only a few reference individuals are available. The framework is aided by a score assignment based on source differentiation to maximize the amount of sequences retrieved and is capable of retrieving accurate ancestry assignments when only two individuals for source populations are used.


Assuntos
Coloração Cromossômica/métodos , Genômica , Humanos , Padrões de Herança , Análise dos Mínimos Quadrados , Software
10.
PLoS Genet ; 17(2): e1009303, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539374

RESUMO

Generative models have shown breakthroughs in a wide spectrum of domains due to recent advancements in machine learning algorithms and increased computational power. Despite these impressive achievements, the ability of generative models to create realistic synthetic data is still under-exploited in genetics and absent from population genetics. Yet a known limitation in the field is the reduced access to many genetic databases due to concerns about violations of individual privacy, although they would provide a rich resource for data mining and integration towards advancing genetic studies. In this study, we demonstrated that deep generative adversarial networks (GANs) and restricted Boltzmann machines (RBMs) can be trained to learn the complex distributions of real genomic datasets and generate novel high-quality artificial genomes (AGs) with none to little privacy loss. We show that our generated AGs replicate characteristics of the source dataset such as allele frequencies, linkage disequilibrium, pairwise haplotype distances and population structure. Moreover, they can also inherit complex features such as signals of selection. To illustrate the promising outcomes of our method, we showed that imputation quality for low frequency alleles can be improved by data augmentation to reference panels with AGs and that the RBM latent space provides a relevant encoding of the data, hence allowing further exploration of the reference dataset and features for solving supervised tasks. Generative models and AGs have the potential to become valuable assets in genetic studies by providing a rich yet compact representation of existing genomes and high-quality, easy-access and anonymous alternatives for private databases.


Assuntos
Simulação por Computador , Genoma Humano , Aprendizado de Máquina , População/genética , Algoritmos , Alelos , Cromossomos Humanos Par 15/genética , Bases de Dados Factuais , Bases de Dados Genéticas , Aprendizado Profundo , Projeto HapMap , Humanos , Cadeias de Markov , Redes Neurais de Computação , Polimorfismo de Nucleotídeo Único
11.
Curr Biol ; 29(23): 3974-3986.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735679

RESUMO

The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , População Negra/genética , Fluxo Gênico , Genoma Humano , População Branca/genética , Região do Caribe , América Central , Humanos , América do Norte , América do Sul
12.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744094

RESUMO

Many anthropological, linguistic, genetic and genomic analyses have been carried out to evaluate the potential impact that evolutionary forces had in shaping the present-day Sardinian gene pool, the main outlier in the genetic landscape of Europe. However, due to the homogenizing effect of internal movements, which have intensified over the past fifty years, only partial information has been obtained about the main demographic events. To overcome this limitation, we analyzed the male-specific region of the Y chromosome in three population samples obtained by reallocating a large number of Sardinian subjects to the place of origin of their monophyletic surnames, which are paternally transmitted through generations in most of the populations, much like the Y chromosome. Three Y-chromosome founding lineages, G2-L91, I2-M26 and R1b-V88, were identified as strongly contributing to the definition of the outlying position of Sardinians in the European genetic context and marking a significant differentiation within the island. The present distribution of these lineages does not always mirror that detected in ancient DNAs. Our results show that the analysis of the Y-chromosome gene pool coupled with a sampling method based on the origin of the family name, is an efficient approach to unravelling past heterogeneity, often hidden by recent movements, in the gene pool of modern populations. Furthermore, the reconstruction and comparison of past genetic isolates represent a starting point to better assess the genetic information deriving from the increasing number of available ancient DNA samples.


Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Cromossomos Humanos Y/classificação , DNA Antigo/análise , Frequência do Gene , Ligação Genética , Haplótipos , Humanos , Ilhas , Itália , Masculino , Filogenia , Análise de Componente Principal , População Branca/genética
13.
BMC Biol ; 17(1): 3, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674303

RESUMO

BACKGROUND: Recent genome studies of modern and ancient samples have proposed that Native Americans derive from a subset of the Eurasian gene pool carried to America by an ancestral Beringian population, from which two well-differentiated components originated and subsequently mixed in different proportion during their spread in the Americas. To assess the timing, places of origin and extent of admixture between these components, we performed an analysis of the Y-chromosome haplogroup Q, which is the only Pan-American haplogroup and accounts for virtually all Native American Y chromosomes in Mesoamerica and South America. RESULTS: Our analyses of 1.5 Mb of 152 Y chromosomes, 34 re-sequenced in this work, support a "coastal and inland routes scenario" for the first entrance of modern humans in North America. We show a major phase of male population growth in the Americas after 15 thousand years ago (kya), followed by a period of constant population size from 8 to 3 kya, after which a secondary sign of growth was registered. The estimated dates of the first expansion in Mesoamerica and the Isthmo-Colombian Area, mainly revealed by haplogroup Q-Z780, suggest an entrance in South America prior to 15 kya. During the global constant population size phase, local South American hints of growth were registered by different Q-M848 sub-clades. These expansion events, which started during the Holocene with the improvement of climatic conditions, can be ascribed to multiple cultural changes rather than a steady population growth and a single cohesive culture diffusion as it occurred in Europe. CONCLUSIONS: We established and dated a detailed haplogroup Q phylogeny that provides new insights into the geographic distribution of its Eurasian and American branches in modern and ancient samples.


Assuntos
Cromossomos Humanos Y , Variação Genética , Haplótipos , Indígenas Norte-Americanos/genética , Polimorfismo de Nucleotídeo Único , População Branca/genética , América , Europa (Continente) , Genética Populacional , Humanos , Filogenia
14.
Am J Hum Genet ; 103(6): 918-929, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526867

RESUMO

The Indus Valley has been the backdrop for several historic and prehistoric population movements between South Asia and West Eurasia. However, the genetic structure of present-day populations from Northwest India is poorly characterized. Here we report new genome-wide genotype data for 45 modern individuals from four Northwest Indian populations, including the Ror, whose long-term occupation of the region can be traced back to the early Vedic scriptures. Our results suggest that although the genetic architecture of most Northwest Indian populations fits well on the broader North-South Indian genetic cline, culturally distinct groups such as the Ror stand out by being genetically more akin to populations living west of India; such populations include prehistorical and early historical ancient individuals from the Swat Valley near the Indus Valley. We argue that this affinity is more likely a result of genetic continuity since the Bronze Age migrations from the Steppe Belt than a result of recent admixture. The observed patterns of genetic relationships both with modern and ancient West Eurasians suggest that the Ror can be used as a proxy for a population descended from the Ancestral North Indian (ANI) population. Collectively, our results show that the Indus Valley populations are characterized by considerable genetic heterogeneity that has persisted over thousands of years.


Assuntos
Etnicidade/genética , Variação Genética/genética , Ásia , Emigração e Imigração , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Geografia , Humanos , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...