Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(15): 3361-3369, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37401915

RESUMO

Mass spectrometry (MS) enables detection of different chemical species with a very high specificity; however, it can be limited by its throughput. Integrating MS with microfluidics has a tremendous potential to improve throughput and accelerate biochemical research. In this work, we introduce Drop-NIMS, a combination of a passive droplet loading microfluidic device and a matrix-free MS laser desorption ionization technique called nanostructure-initiator mass spectrometry (NIMS). This platform combines different droplets at random to generate a combinatorial library of enzymatic reactions that are deposited directly on the NIMS surface without requiring additional sample handling. The enzyme reaction products are then detected with MS. Drop-NIMS was used to rapidly screen enzymatic reactions containing low (on the order of nL) volumes of glycoside reactants and glycoside hydrolase enzymes per reaction. MS "barcodes" (small compounds with unique masses) were added to the droplets to identify different combinations of substrates and enzymes created by the device. We assigned xylanase activities to several putative glycoside hydrolases, making them relevant to food and biofuel industrial applications. Overall, Drop-NIMS is simple to fabricate, assemble, and operate and it has potential to be used with many other small molecule metabolites.


Assuntos
Glicosídeo Hidrolases , Nanoestruturas , Espectrometria de Massas/métodos , Glicosídeo Hidrolases/metabolismo , Nanoestruturas/química , Dispositivos Lab-On-A-Chip , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196287

RESUMO

The versatile soil bacterium Anaeromyxobacter dehalogenans lacks the hallmark denitrification genes nirS and nirK (encoding NO2-→NO reductases) and couples growth to NO3- reduction to NH4+ (respiratory ammonification) and to N2O reduction to N2A. dehalogenans also grows by reducing Fe(III) to Fe(II), which chemically reacts with NO2- to form N2O (i.e., chemodenitrification). Following the addition of 100 µmol of NO3- or NO2- to Fe(III)-grown axenic cultures of A. dehalogenans, 54 (±7) µmol and 113 (±2) µmol N2O-N, respectively, were produced and subsequently consumed. The conversion of NO3- to N2 in the presence of Fe(II) through linked biotic-abiotic reactions represents an unrecognized ecophysiology of A. dehalogenans The new findings demonstrate that the assessment of gene content alone is insufficient to predict microbial denitrification potential and N loss (i.e., the formation of gaseous N products). A survey of complete bacterial genomes in the NCBI Reference Sequence database coupled with available physiological information revealed that organisms lacking nirS or nirK but with Fe(III) reduction potential and genes for NO3- and N2O reduction are not rare, indicating that NO3- reduction to N2 through linked biotic-abiotic reactions is not limited to A. dehalogenans Considering the ubiquity of iron in soils and sediments and the broad distribution of dissimilatory Fe(III) and NO3- reducers, denitrification independent of NO-forming NO2- reductases (through combined biotic-abiotic reactions) may have substantial contributions to N loss and N2O flux.IMPORTANCE Current attempts to gauge N loss from soils rely on the quantitative measurement of nirK and nirS genes and/or transcripts. In the presence of iron, the common soil bacterium Anaeromyxobacter dehalogenans is capable of denitrification and the production of N2 without the key denitrification genes nirK and nirS Such chemodenitrifiers denitrify through combined biotic and abiotic reactions and have potentially large contributions to N loss to the atmosphere and fill a heretofore unrecognized ecological niche in soil ecosystems. The findings emphasize that the comprehensive understanding of N flux and the accurate assessment of denitrification potential can be achieved only when integrated studies of interlinked biogeochemical cycles are performed.


Assuntos
Proteínas de Bactérias/metabolismo , Desnitrificação , Myxococcales/metabolismo , Nitrito Redutases/deficiência , Microbiologia do Solo , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA