Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Syst ; 14(6): 447-463.e8, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37220749

RESUMO

The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organization into complexes, including constitutive interactions and those responding to genomic insult. Here, we use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity purifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin functions. We find that protein assemblies closely align with genetic dependencies in processing specific genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/ddram/).


Assuntos
Cromatina , Reparo do DNA , Reparo do DNA/genética , Cromatina/genética , Dano ao DNA/genética
2.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36882166

RESUMO

MOTIVATION: The investigation of sets of genes using biological pathways is a common task for researchers and is supported by a wide variety of software tools. This type of analysis generates hypotheses about the biological processes that are active or modulated in a specific experimental context. RESULTS: The Network Data Exchange Integrated Query (NDEx IQuery) is a new tool for network and pathway-based gene set interpretation that complements or extends existing resources. It combines novel sources of pathways, integration with Cytoscape, and the ability to store and share analysis results. The NDEx IQuery web application performs multiple gene set analyses based on diverse pathways and networks stored in NDEx. These include curated pathways from WikiPathways and SIGNOR, published pathway figures from the last 27 years, machine-assembled networks using the INDRA system, and the new NCI-PID v2.0, an updated version of the popular NCI Pathway Interaction Database. NDEx IQuery's integration with MSigDB and cBioPortal now provides pathway analysis in the context of these two resources. AVAILABILITY AND IMPLEMENTATION: NDEx IQuery is available at https://www.ndexbio.org/iquery and is implemented in Javascript and Java.


Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , Mapas de Interação de Proteínas , Publicações , Bases de Dados Factuais , Internet
3.
Nat Biotechnol ; 40(4): 566-575, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34992246

RESUMO

Phylogeny estimation (the reconstruction of evolutionary trees) has recently been applied to CRISPR-based cell lineage tracing, allowing the developmental history of an individual tissue or organism to be inferred from a large number of mutated sequences in somatic cells. However, current computational methods are not able to construct phylogenetic trees from extremely large numbers of input sequences. Here, we present a deep distributed computing framework to comprehensively trace accurate large lineages (FRACTAL) that substantially enhances the scalability of current lineage estimation software tools. FRACTAL first reconstructs only an upstream lineage of the input sequences and recursively iterates the same produce for its downstream lineages using independent computing nodes. We demonstrate the utility of FRACTAL by reconstructing lineages from >235 million simulated sequences and from >16 million cells from a simulated experiment with a CRISPR system that accumulates mutations during cell proliferation. We also successfully applied FRACTAL to evolutionary tree reconstructions and to an experiment using error-prone PCR (EP-PCR) for large-scale sequence diversification.


Assuntos
Algoritmos , Software , Linhagem da Célula/genética , Mutação , Filogenia
4.
Curr Protoc ; 1(9): e258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34570431

RESUMO

NDEx, the Network Data Exchange (https://www.ndexbio.org) is a web-based resource where users can find, store, share and publish network models of any type and size. NDEx is integrated with Cytoscape, the widely used desktop application for network analysis and visualization. NDEx and Cytoscape are the pillars of the Cytoscape Ecosystem, a diverse environment of resources, tools, applications and services for network biology workflows. In this article, we introduce researchers to NDEx and highlight how it can simplify common tasks in network biology workflows as well as streamline publication and access to). Finally, we show how NDEx can be used programmatically via Python with the 'ndex2' client library, and point readers to additional examples for other popular programming languages such as JavaScript and R. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Getting started with NDEx Basic Protocol 2: Using NDEx and Cytoscape in a publication-oriented workflow Basic Protocol 3: Manipulating networks in NDEx via Python.


Assuntos
Biologia Computacional , Software , Ecossistema , Humanos , Fluxo de Trabalho
5.
Science ; 374(6563): eabf3067, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591613

RESUMO

A major goal of cancer research is to understand how mutations distributed across diverse genes affect common cellular systems, including multiprotein complexes and assemblies. Two challenges­how to comprehensively map such systems and how to identify which are under mutational selection­have hindered this understanding. Accordingly, we created a comprehensive map of cancer protein systems integrating both new and published multi-omic interaction data at multiple scales of analysis. We then developed a unified statistical model that pinpoints 395 specific systems under mutational selection across 13 cancer types. This map, called NeST (Nested Systems in Tumors), incorporates canonical processes and notable discoveries, including a PIK3CA-actomyosin complex that inhibits phosphatidylinositol 3-kinase signaling and recurrent mutations in collagen complexes that promote tumor proliferation. These systems can be used as clinical biomarkers and implicate a total of 548 genes in cancer evolution and progression. This work shows how disparate tumor mutations converge on protein assemblies at different scales.


Assuntos
Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Mapas de Interação de Proteínas/genética , Genes Neoplásicos , Humanos , Mutação , Mapeamento de Interação de Proteínas/métodos
6.
Cell Syst ; 8(3): 267-273.e3, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30878356

RESUMO

Systems biology requires not only genome-scale data but also methods to integrate these data into interpretable models. Previously, we developed approaches that organize omics data into a structured hierarchy of cellular components and pathways, called a "data-driven ontology." Such hierarchies recapitulate known cellular subsystems and discover new ones. To broadly facilitate this type of modeling, we report the development of a software library called the Data-Driven Ontology Toolkit (DDOT), consisting of a Python package (https://github.com/idekerlab/ddot) to assemble and analyze ontologies and a web application (http://hiview.ucsd.edu) to visualize them. Using DDOT, we programmatically assemble a compendium of ontologies for 652 diseases by integrating gene-disease mappings with a gene similarity network derived from omics data. For example, the ontology for Fanconi anemia describes known and novel disease mechanisms in its hierarchy of 194 genes and 74 subsystems. DDOT provides an easy interface to share ontologies online at the Network Data Exchange.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Redes Reguladoras de Genes , Software , Ontologia Genética , Humanos
7.
F1000Res ; 7: 800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983926

RESUMO

Cytoscape is the premiere platform for interactive analysis, integration and visualization of network data. While Cytoscape itself delivers much basic functionality, it relies on community-written apps to deliver specialized functions and analyses. To date, Cytoscape's CyREST feature has allowed researchers to write workflows that call basic Cytoscape functions, but provides no access to its high value app-based functions. With Cytoscape Automation, workflows can now call apps that have been upgraded to expose their functionality. This article collection is a resource to assist readers in quickly and economically leveraging such apps in reproducible workflows that scale independently to large data sets and production runs.

8.
Nat Methods ; 15(4): 290-298, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29505029

RESUMO

Although artificial neural networks are powerful classifiers, their internal structures are hard to interpret. In the life sciences, extensive knowledge of cell biology provides an opportunity to design visible neural networks (VNNs) that couple the model's inner workings to those of real systems. Here we develop DCell, a VNN embedded in the hierarchical structure of 2,526 subsystems comprising a eukaryotic cell (http://d-cell.ucsd.edu/). Trained on several million genotypes, DCell simulates cellular growth nearly as accurately as laboratory observations. During simulation, genotypes induce patterns of subsystem activities, enabling in silico investigations of the molecular mechanisms underlying genotype-phenotype associations. These mechanisms can be validated, and many are unexpected; some are governed by Boolean logic. Cumulatively, 80% of the importance for growth prediction is captured by 484 subsystems (21%), reflecting the emergence of a complex phenotype. DCell provides a foundation for decoding the genetics of disease, drug resistance and synthetic life.


Assuntos
Fenômenos Fisiológicos Celulares , Aprendizado Profundo , Redes Neurais de Computação , Simulação por Computador , Regulação da Expressão Gênica , Genótipo , Humanos
9.
Mol Cell ; 65(4): 761-774.e5, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28132844

RESUMO

We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.


Assuntos
Autofagia/genética , Redes Reguladoras de Genes , Genômica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biologia de Sistemas/métodos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Bases de Dados Genéticas , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Fúngica da Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Modelos Genéticos , Pichia/genética , Pichia/metabolismo , Mapas de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Integração de Sistemas
10.
JCI Insight ; 1(17): e87877, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27777973

RESUMO

To derive new insights in diabetic complications, we integrated publicly available human protein-protein interaction (PPI) networks with global metabolic networks using metabolomic data from patients with diabetic nephropathy. We focused on the participating proteins in the network that were computationally predicted to connect the urine metabolites. MDM2 had the highest significant number of PPI connections. As validation, significant downregulation of MDM2 gene expression was found in both glomerular and tubulointerstitial compartments of kidney biopsy tissue from 2 independent cohorts of patients with diabetic nephropathy. In diabetic mice, chemical inhibition of MDM2 with Nutlin-3a led to reduction in the number of podocytes, increased blood urea nitrogen, and increased mortality. Addition of Nutlin-3a decreased WT1+ cells in embryonic kidneys. Both podocyte- and tubule-specific MDM2-knockout mice exhibited severe glomerular and tubular dysfunction, respectively. Interestingly, the only 2 metabolites that were reduced in both podocyte and tubule-specific MDM2-knockout mice were 3-methylcrotonylglycine and uracil, both of which were also reduced in human diabetic kidney disease. Thus, our bioinformatics tool combined with multi-omics studies identified an important functional role for MDM2 in glomeruli and tubules of the diabetic nephropathic kidney and links MDM2 to a reduction in 2 key metabolite biomarkers.


Assuntos
Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Biologia de Sistemas , Albuminúria , Animais , Biologia Computacional , Diabetes Mellitus Experimental/metabolismo , Humanos , Glomérulos Renais/fisiopatologia , Túbulos Renais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos
11.
F1000Res ; 4: 478, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26672762

RESUMO

As bioinformatic workflows become increasingly complex and involve multiple specialized tools, so does the difficulty of reliably reproducing those workflows. Cytoscape is a critical workflow component for executing network visualization, analysis, and publishing tasks, but it can be operated only manually via a point-and-click user interface. Consequently, Cytoscape-oriented tasks are laborious and often error prone, especially with multistep protocols involving many networks. In this paper, we present the new cyREST Cytoscape app and accompanying harmonization libraries. Together, they improve workflow reproducibility and researcher productivity by enabling popular languages (e.g., Python and R, JavaScript, and C#) and tools (e.g., IPython/Jupyter Notebook and RStudio) to directly define and query networks, and perform network analysis, layouts and renderings. We describe cyREST's API and overall construction, and present Python- and R-based examples that illustrate how Cytoscape can be integrated into large scale data analysis pipelines. cyREST is available in the Cytoscape app store (http://apps.cytoscape.org) where it has been downloaded over 1900 times since its release in late 2014.

12.
Cell Syst ; 1(4): 302-305, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26594663

RESUMO

Networks are a powerful and flexible methodology for expressing biological knowledge for computation and communication. Network-encoded information can include systematic screens for molecular interactions, biological relationships curated from literature, and outputs from analysis of Big Data. NDEx, the Network Data Exchange (www.ndexbio.org), is an online commons where scientists can upload, share, and publicly distribute networks. Networks in NDEx receive globally unique accession IDs and can be stored for private use, shared in pre-publication collaboration, or released for public access. Standard and novel data formats are accommodated in a flexible storage model. Organizations can use NDEx as a distribution channel for networks they generate or curate. Developers of bioinformatic applications can store and query NDEx networks via a common programmatic interface. NDEx helps expand the role of networks in scientific discourse and facilitates the integration of networks as data in publications. It is a step towards an ecosystem in which networks bearing data, hypotheses, and findings flow easily between scientists.

13.
Bioinformatics ; 31(23): 3868-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26272981

RESUMO

UNLABELLED: We developed cyNeo4j, a Cytoscape App to link Cytoscape and Neo4j databases to utilize the performance and storage capacities Neo4j offers. We implemented a Neo4j NetworkAnalyzer, ForceAtlas2 layout and Cypher component to demonstrate the possibilities a distributed setup of Cytoscape and Neo4j have. AVAILABILITY AND IMPLEMENTATION: The app is available from the Cytoscape App Store at http://apps.cytoscape.org/apps/cyneo4j, the Neo4j plugins at www.github.com/gsummer/cyneo4j-parent and the community and commercial editions of Neo4j can be found at http://www.neo4j.com. CONTACT: georg.summer@gmail.com.


Assuntos
Bases de Dados Factuais , Software , Algoritmos
14.
F1000Res ; 3: 143, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520778

RESUMO

In this paper we present new data export modules for Cytoscape 3 that can generate network files for Cytoscape.js and D3.js. Cytoscape.js exporter is implemented as a core feature of Cytoscape 3, and D3.js exporter is available as a Cytoscape 3 app. These modules enable users to seamlessly export network and table data sets generated in Cytoscape to popular JavaScript library readable formats. In addition, we implemented template web applications for browser-based interactive network visualization that can be used as basis for complex data visualization applications for bioinformatics research. Example web applications created with these tools demonstrate how Cytoscape works in modern data visualization workflows built with traditional desktop tools and emerging web-based technologies. This interactivity enables researchers more flexibility than with static images, thereby greatly improving the quality of insights researchers can gain from them.

15.
F1000Res ; 3: 144, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177485

RESUMO

In this paper, we present KEGGscape a pathway data integration and visualization app for Cytoscape ( http://apps.cytoscape.org/apps/keggscape). KEGG is a comprehensive public biological database that contains large collection of human curated pathways. KEGGscape utilizes the database to reproduce the corresponding hand-drawn pathway diagrams with as much detail as possible in Cytoscape. Further, it allows users to import pathway data sets to visualize biologist-friendly diagrams using the Cytoscape core visualization function (Visual Style) and the ability to perform pathway analysis with a variety of Cytoscape apps. From the analyzed data, users can create complex and interactive visualizations which cannot be done in the KEGG PATHWAY web application. Experimental data with Affymetrix E. coli chips are used as an example to demonstrate how users can integrate pathways, annotations, and experimental data sets to create complex visualizations that clarify biological systems using KEGGscape and other Cytoscape apps.

16.
Nucleic Acids Res ; 42(Database issue): D1269-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24271398

RESUMO

The Network-extracted Ontology (NeXO) is a gene ontology inferred directly from large-scale molecular networks. While most ontologies are constructed through manual expert curation, NeXO uses a principled computational approach which integrates evidence from hundreds of thousands of individual gene and protein interactions to construct a global hierarchy of cellular components and processes. Here, we describe the development of the NeXO Web platform (http://www.nexontology.org)-an online database and graphical user interface for visualizing, browsing and performing term enrichment analysis using NeXO and the gene ontology. The platform applies state-of-the-art web technology and visualization techniques to provide an intuitive framework for investigating biological machinery captured by both data-driven and manually curated ontologies.


Assuntos
Bases de Dados Genéticas , Ontologia Genética , Redes Reguladoras de Genes , Gráficos por Computador , Epistasia Genética , Internet , Mapeamento de Interação de Proteínas
17.
F1000Res ; 3: 138, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25580224

RESUMO

As a network visualization and analysis platform, Cytoscape relies on apps to provide domain-specific features and functions. There are many resources available to support Cytoscape app development and distribution, including the Cytoscape App Store and an online "cookbook" for app developers. This article collection is another resource to help researchers find out more about relevant Cytoscape apps and to provide app developers with useful implementation tips. The collection will grow over time as new Cytoscape apps are developed and published.

18.
Nucleic Acids Res ; 41(Web Server issue): W601-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23671334

RESUMO

The Proteomics Standard Initiative Common QUery InterfaCe (PSICQUIC) specification was created by the Human Proteome Organization Proteomics Standards Initiative (HUPO-PSI) to enable computational access to molecular-interaction data resources by means of a standard Web Service and query language. Currently providing >150 million binary interaction evidences from 28 servers globally, the PSICQUIC interface allows the concurrent search of multiple molecular-interaction information resources using a single query. Here, we present an extension of the PSICQUIC specification (version 1.3), which has been released to be compliant with the enhanced standards in molecular interactions. The new release also includes a new reference implementation of the PSICQUIC server available to the data providers. It offers augmented web service capabilities and improves the user experience. PSICQUIC has been running for almost 5 years, with a user base growing from only 4 data providers to 28 (April 2013) allowing access to 151 310 109 binary interactions. The power of this web service is shown in PSICQUIC View web application, an example of how to simultaneously query, browse and download results from the different PSICQUIC servers. This application is free and open to all users with no login requirement (http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml).


Assuntos
Proteômica/normas , Software , Internet
19.
J Biomed Semantics ; 4(1): 6, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23398680

RESUMO

BACKGROUND: BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. RESULTS: The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. CONCLUSION: We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.

20.
Nat Methods ; 9(11): 1069-76, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23132118

RESUMO

Cytoscape is open-source software for integration, visualization and analysis of biological networks. It can be extended through Cytoscape plugins, enabling a broad community of scientists to contribute useful features. This growth has occurred organically through the independent efforts of diverse authors, yielding a powerful but heterogeneous set of tools. We present a travel guide to the world of plugins, covering the 152 publicly available plugins for Cytoscape 2.5-2.8. We also describe ongoing efforts to distribute, organize and maintain the quality of the collection.


Assuntos
Redes Reguladoras de Genes , Genes/fisiologia , Genômica/métodos , Software , Algoritmos , Biologia Computacional , Simulação por Computador , Mineração de Dados , Sistemas de Gerenciamento de Base de Dados , Perfilação da Expressão Gênica , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...