Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytoskeleton (Hoboken) ; 81(2-3): 127-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37792405

RESUMO

The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells. However, biochemical studies showed that UNC-87 and CLIK-1 are different in their ability to bundle actin filaments. In this study, I extended comparison between UNC-87 and CLIK-1 and found additional differences in vitro and in vivo. Although UNC-87 and CLIK-1 bound to actin filaments similarly, UNC-87, but not CLIK-1, bound to myosin and inhibited actomyosin ATPase in vitro. In striated muscle, UNC-87 and CLIK-1 were segregated into different subregions within sarcomeric actin filaments. CLIK-1 was concentrated near the actin pointed ends, whereas UNC-87 was enriched toward the actin barbed ends. Restricted localization of UNC-87 was not altered in a clik-1-null mutant, suggesting that their segregated localization is not due to competition between the two related proteins. These results suggest that the two calponin-related proteins have both common and distinct roles in regulating actin filaments.


Assuntos
Proteínas de Caenorhabditis elegans , Músculo Estriado , Animais , Caenorhabditis elegans/metabolismo , Actinas/metabolismo , Calponinas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citoesqueleto de Actina/metabolismo , Músculo Estriado/metabolismo , Músculo Esquelético/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
2.
PNAS Nexus ; 2(10): pgad330, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37869480

RESUMO

Precise arrangement of actin, myosin, and other regulatory components in a sarcomeric pattern is critical for producing contractile forces in striated muscles. Actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), is one of essential factors that regulate sarcomeric assembly of actin filaments. In the nematode Caenorhabditis elegans, mutation in unc-78, encoding one of the two AIP1 isoforms, causes severe disorganization of sarcomeric actin filaments and near paralysis, but mutation in sup-13 suppresses the unc-78-mutant phenotypes to restore nearly normal sarcomeric actin organization and worm motility. Here, we identified that sup-13 is a nonsense allele of arrd-15 encoding an α-arrestin. The sup-13/arrd-15 mutation suppressed the phenotypes of unc-78 null mutant but required aipl-1 that encodes a second AIP1 isoform. aipl-1 was normally expressed highly in embryos and downregulated in mature muscle. However, in the sup-13/arrd-15 mutant, the AIPL-1 protein was maintained at high levels in adult muscle to compensate for the absence of the UNC-78 protein. The sup-13/arrd-15 mutation caused accumulation of ubiquitinated AIPL-1 protein, suggesting that a normal function of sup-13/arrd-15 is to enhance degradation of ubiquitinated AIPL-1, thereby promoting transition of AIP1 isoforms from AIPL-1 to UNC-78 in developing muscle. These results suggest that α-arrestin is a novel factor to promote isoform turnover by enhancing protein degradation.

3.
Front Cell Dev Biol ; 11: 1208913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745299

RESUMO

Tropomyosin is generally known as an actin-binding protein that regulates actomyosin interaction and actin filament stability. In metazoans, multiple tropomyosin isoforms are expressed, and some of them are involved in generating subpopulations of actin cytoskeleton in an isoform-specific manner. However, functions of many tropomyosin isoforms remain unknown. Here, we report identification of a novel alternative exon in the Caenorhabditis elegans tropomyosin gene and characterization of the effects of alternative splicing on the properties of tropomyosin isoforms. Previous studies have reported six tropomyosin isoforms encoded by the C. elegans lev-11 tropomyosin gene. We identified a seventh isoform, LEV-11U, that contained a novel alternative exon, exon 7c (E7c). LEV-11U is a low-molecular-weight tropomyosin isoform that differs from LEV-11T only at the exon 7-encoded region. In silico analyses indicated that the E7c-encoded peptide sequence was unfavorable for coiled-coil formation and distinct from other tropomyosin isoforms in the pattern of electrostatic surface potentials. In vitro, LEV-11U bound poorly to actin filaments, whereas LEV-11T bound to actin filaments in a saturable manner. When these isoforms were transgenically expressed in the C. elegans striated muscle, LEV-11U was present in the diffuse cytoplasm with tendency to form aggregates, whereas LEV-11T co-localized with sarcomeric actin filaments. Worms with a mutation in E7c showed reduced motility and brood size, suggesting that this exon is important for the optimal health. These results indicate that alternative splicing of a single exon can produce biochemically diverged tropomyosin isoforms and suggest that a tropomyosin isoform with poor actin affinity has a novel biological function.

4.
Eur J Cell Biol ; 101(2): 151215, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35306452

RESUMO

Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.


Assuntos
Músculo Estriado , Tropomodulina , Citoesqueleto de Actina , Actinas/genética , Animais , Caenorhabditis elegans/genética , Mamíferos , Sarcômeros , Tropomodulina/genética , Tropomiosina/genética
5.
Methods Mol Biol ; 2364: 149-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34542852

RESUMO

The nematode Caenorhabditis elegans is one of the major model organisms in cell and developmental biology. This organism is easy to culture in laboratories and suitable for microscopic investigation of the cytoskeleton. Because the worms are small and transparent, the actin cytoskeleton in many tissues and cells can be observed with appropriate visualization techniques without sectioning or dissection. This chapter describes the introduction to representative methods for imaging the actin cytoskeleton in C. elegans and a protocol for staining worms with fluorescent phalloidin.


Assuntos
Caenorhabditis elegans , Citoesqueleto de Actina , Animais , Citoesqueleto
6.
Sensors (Basel) ; 21(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34577383

RESUMO

Ammonia gas sensors were fabricated via layer-by-layer (LbL) deposition of diazo resin (DAR) and a binary mixture of tetrakis(4-sulfophenyl)porphine (TSPP) and poly(styrene sulfonate) (PSS) onto the core of a multimode U-bent optical fiber. The penetration of light transferred into the evanescent field was enhanced by stripping the polymer cladding and coating the fiber core. The electrostatic interaction between the diazonium ion in DAR and the sulfonate residues in TSPP and PSS was converted into covalent bonds using UV irradiation. The photoreaction between the layers was confirmed by UV-vis and Fourier transform infrared spectroscopy. The sensitivity of the optical fiber sensors to ammonia was linear when exposed to ammonia gases generated from aqueous ammonia solutions at a concentration of approximately 17 parts per million (ppm). This linearity extended up to 50 ppm when the exposure time (30 s) was shortened. The response and recovery times were reduced to 30 s with a 5-cycle DAR/TSPP+PSS (as a mixture of 1 mM TSPP and 0.025 wt% PSS in water) film sensor. The limit of detection (LOD) of the optimized sensor was estimated to be 0.31 ppm for ammonia in solution, corresponding to approximately 0.03 ppm of ammonia gas. It is hypothesized that the presence of the hydrophobic moiety of PSS in the matrix suppressed the effects of humidity on the sensor response. The sensor response was stable and reproducible over seven days. The PSS-containing U-bent fiber sensor also showed superior sensitivity to ammonia when examined alongside amine and non-amine analytes.


Assuntos
Amônia , Porfirinas , Umidade , Fibras Ópticas , Poliestirenos
7.
Cytoskeleton (Hoboken) ; 78(5): 199-205, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34333878

RESUMO

The calponin family proteins in vertebrates, including calponin and transgelin (also known as SM22 or NP25), regulate actin-myosin interaction and actin filament stability and are involved in regulation of muscle contractility and cell migration. Related proteins are also present in invertebrates and fungi. Animals have multiple genes encoding calponin family proteins with variable molecular features, which are often expressed in the same tissues or cells. However, functional studies of this class of proteins have been reported only in limited species. Through database searches, I found that the calponin family proteins were diversified in animals by gene amplification and repeat expansion of calponin-like (CLIK) motifs, which function as actin-binding sequences. Transgelin-like proteins with a single CLIK motif are the most primitive type and present in fungi and animals. In many animals, additional calponin family proteins containing multiple CLIK motifs, as represented by vertebrate calponins with three CLIK motifs, are present. Interestingly, in several invertebrate species, there are uncharacterized calponin-related proteins with highly expanded repeats of CLIK motifs (up to 23 repeats in mollusks). These variable molecular features of the calponin family proteins may be results of evolutionary adaptation to a broad range of cell biological events.


Assuntos
Proteínas de Ligação ao Cálcio , Amplificação de Genes , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos , Calponinas
8.
J Biol Chem ; 296: 100649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839148

RESUMO

Cyclase-associated protein (CAP) is a conserved actin-binding protein that regulates multiple aspects of actin dynamics, including polymerization, depolymerization, filament severing, and nucleotide exchange. CAP has been isolated from different cells and tissues in an equimolar complex with actin, and previous studies have shown that a CAP-actin complex contains six molecules each of CAP and actin. Intriguingly, here, we successfully isolated a complex of Xenopus cyclase-associated protein 1 (XCAP1) with actin from oocyte extracts, which contained only four molecules each of XCAP1 and actin. This XCAP1-actin complex remained stable as a single population of 340 kDa species during hydrodynamic analyses using gel filtration or analytical ultracentrifugation. Examination of the XCAP1-actin complex by high-speed atomic force microscopy revealed a tripartite structure: one middle globular domain and two globular arms. The two arms were observed in high and low states. The arms at the high state were spontaneously converted to the low state by dissociation of actin from the complex. However, when extra G-actin was added, the arms at the low state were converted to the high state. Based on the known structures of the N-terminal helical-folded domain and C-terminal CARP domain, we hypothesize that the middle globular domain corresponds to a tetramer of the N-terminal helical-folded domain of XCAP1 and that each arm in the high state corresponds to a heterotetramer containing a dimer of the C-terminal CARP domain of XCAP1 and two G-actin molecules. This novel configuration of a CAP-actin complex should help to understand how CAP promotes actin filament disassembly.


Assuntos
Actinas/química , Actinas/metabolismo , Oócitos/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Animais , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Feminino , Oócitos/citologia , Xenopus laevis
9.
J Biol Chem ; 295(34): 12014-12027, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32554465

RESUMO

Multicellular organisms have multiple genes encoding calponins and calponin-related proteins, some of which are known to regulate actin cytoskeletal dynamics and contractility. However, the functional similarities and differences among these proteins are largely unknown. In the nematode Caenorhabditis elegans, UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells. Here, we report that CLIK-1, another calponin-related protein that also contains seven CLIK motifs, functionally overlaps with UNC-87 in maintaining actin cytoskeletal integrity in vivo and has both common and different actin-regulatory activities in vitro We found that CLIK-1 is predominantly expressed in the body wall muscle and somatic gonad in which UNC-87 is also expressed. unc-87 mutation caused cytoskeletal defects in the body wall muscle and somatic gonad, whereas clik-1 depletion alone caused no detectable phenotypes. However, simultaneous clik-1 and unc-87 depletion caused sterility because of ovulation failure by severely affecting the contractile actin networks in the myoepithelial sheath of the somatic gonad. In vitro, UNC-87 bundled actin filaments, whereas CLIK-1 bound to actin filaments without bundling them and antagonized UNC-87-mediated filament bundling. We noticed that UNC-87 and CLIK-1 share common functions that inhibit cofilin binding and allow tropomyosin binding to actin filaments, suggesting that both proteins stabilize actin filaments. In conclusion, partially redundant functions of UNC-87 and CLIK-1 in ovulation are likely mediated by their common actin-regulatory activities, but their distinct actin-bundling activities suggest that they also have different biological functions.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Ovulação , Citoesqueleto de Actina/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Citoesqueleto/genética , Feminino , Proteínas Musculares/genética
11.
Biomech Model Mechanobiol ; 19(5): 1509-1521, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31965350

RESUMO

Formins promote actin assembly and are involved in force-dependent cytoskeletal remodeling. However, how force alters the formin functions still needs to be investigated. Here, using atomic force microscopy and biomembrane force probe, we investigated how mechanical force affects formin-mediated actin interactions at the level of single molecular complexes. The biophysical parameters of G-actin/G-actin (GG) or G-actin/F-actin (GF) interactions were measured under force loading in the absence or presence of two C-terminal fragments of the mouse formin mDia1: mDia1Ct that contains formin homology 2 domain (FH2) and diaphanous autoregulatory domain (DAD) and mDia1Ct-ΔDAD that contains only FH2. Under force-free conditions, neither association nor dissociation kinetics of GG and GF interactions were significantly affected by mDia1Ct or mDia1Ct-ΔDAD. Under tensile forces (0-7 pN), the average lifetimes of these bonds were prolonged and molecular complexes were stiffened in the presence of mDia1Ct, indicating mDia1Ct association kinetically stabilizes and mechanically strengthens bonds of the dimer and at the end of the F-actin under force. Interestingly, mDia1Ct-ΔDAD prolonged the lifetime of GF but not GG bond under force, suggesting the DAD domain is critical for mDia1Ct to strengthen GG interaction. These data unravel the mechanochemical coupling in formin-induced actin assembly and provide evidence to understand the initiation of formin-mediated actin elongation and nucleation.


Assuntos
Actinas/metabolismo , Forminas/metabolismo , Animais , Fenômenos Biomecânicos , Membrana Celular/metabolismo , Cinética , Camundongos , Modelos Biológicos , Ligação Proteica
12.
FEBS J ; 287(4): 659-670, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31411810

RESUMO

Among many essential genes in the nematode Caenorhabditis elegans, let-330 is located on the left arm of chromosome V and was identified as the largest target of a mutagen in this region. However, let-330 gene has not been characterized at the molecular level. Here, we report that two sequenced let-330 alleles are nonsense mutations of ketn-1, a previously characterized gene encoding kettin. Kettin is a large actin-binding protein of 472 kDa with 31 immunoglobulin domains and is expressed in muscle cells in C. elegans. let-330/ketn-1 mutants are homozygous lethal at the first larval stage with mild defects in body elongation. These mutants have severe defects in sarcomeric actin and myosin assembly in striated muscle. However, α-actinin and vinculin, which are components of the dense bodies anchoring actin to the membranes, were not significantly disorganized by let-330/ketn-1 mutation. Kettin localizes to embryonic myofibrils before α-actinin is expressed, and α-actinin deficiency does not affect kettin localization in larval muscle. Depletion of vinculin minimally affects kettin localization but significantly reduces colocalization of actin with kettin in embryonic muscle cells. These results indicate that kettin is an essential protein for sarcomeric assembly of actin filaments in muscle cells.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Conectina/genética , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Sarcômeros/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinina/genética , Actinina/metabolismo , Actinas/genética , Actinas/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromossomos/química , Códon sem Sentido , Conectina/metabolismo , Embrião não Mamífero , Larva/citologia , Larva/crescimento & desenvolvimento , Morfogênese/genética , Miosinas/genética , Miosinas/metabolismo , Ligação Proteica , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Transdução de Sinais , Vinculina/genética , Vinculina/metabolismo , Sequenciamento Completo do Genoma
13.
Mol Cell Biol ; 40(4)2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31791978

RESUMO

Cyclase-associated protein 1 (CAP1) is a conserved actin-regulating protein that enhances actin filament dynamics and also regulates adhesion in mammalian cells. We previously found that phosphorylation at the Ser307/Ser309 tandem site controls its association with cofilin and actin and is important for CAP1 to regulate the actin cytoskeleton. Here, we report that transient Ser307/Ser309 phosphorylation is required for CAP1 function in both actin filament disassembly and cell adhesion. Both the phosphomimetic and the nonphosphorylatable CAP1 mutant, which resist transition between phosphorylated and dephosphorylated forms, had defects in rescuing the reduced rate of actin filament disassembly in the CAP1 knockdown HeLa cells. The phosphorylation mutants also had defects in alleviating the elevated focal adhesion kinase (FAK) activity and the enhanced focal adhesions in the knockdown cells. In dissecting further phosphoregulatory cell signals for CAP1, we found that cyclin-dependent kinase 5 (CDK5) phosphorylates both Ser307 and Ser309 residues, whereas cAMP signaling induces dephosphorylation at the tandem site, through its effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). No evidence supports an involvement of activated protein phosphatase in executing the dephosphorylation downstream from cAMP, whereas preventing CAP1 from accessing its kinase CDK5 appears to underlie CAP1 dephosphorylation induced by cAMP. Therefore, this study provides direct cellular evidence that transient phosphorylation is required for CAP1 functions in both actin filament turnover and adhesion, and the novel mechanistic insights substantially extend our knowledge of the cell signals that function in concert to regulate CAP1 by facilitating its transient phosphorylation.


Assuntos
Citoesqueleto de Actina/metabolismo , Adesão Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , AMP Cíclico/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Transdução de Sinais/fisiologia , Tiazolidinas/metabolismo
14.
Nature ; 574(7778): E17, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31582857

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Nature ; 573(7775): E4, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31488913

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nature ; 573(7773): 266-270, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462781

RESUMO

Body-axis elongation constitutes a key step in animal development, laying out the final form of the entire animal. It relies on the interplay between intrinsic forces generated by molecular motors1-3, extrinsic forces exerted by adjacent cells4-7 and mechanical resistance forces due to tissue elasticity or friction8-10. Understanding how mechanical forces influence morphogenesis at the cellular and molecular level remains a challenge1. Recent work has outlined how small incremental steps power cell-autonomous epithelial shape changes1-3, which suggests the existence of specific mechanisms that stabilize cell shapes and counteract cell elasticity. Beyond the twofold stage, embryonic elongation in Caenorhabditis elegans is dependent on both muscle activity7 and the epidermis; the tension generated by muscle activity triggers a mechanotransduction pathway in the epidermis that promotes axis elongation7. Here we identify a network that stabilizes cell shapes in C. elegans embryos at a stage that involves non-autonomous mechanical interactions between epithelia and contractile cells. We searched for factors genetically or molecularly interacting with the p21-activating kinase homologue PAK-1 and acting in this pathway, thereby identifying the α-spectrin SPC-1. Combined absence of PAK-1 and SPC-1 induced complete axis retraction, owing to defective epidermal actin stress fibre. Modelling predicts that a mechanical viscoplastic deformation process can account for embryo shape stabilization. Molecular analysis suggests that the cellular basis for viscoplasticity originates from progressive shortening of epidermal microfilaments that are induced by muscle contractions relayed by actin-severing proteins and from formin homology 2 domain-containing protein 1 (FHOD-1) formin bundling. Our work thus identifies an essential molecular lock acting in a developmental ratchet-like process.


Assuntos
Actinas/metabolismo , Padronização Corporal/fisiologia , Caenorhabditis elegans/embriologia , Citoesqueleto de Actina/metabolismo , Animais , Caenorhabditis elegans/citologia , Embrião não Mamífero , Células Epidérmicas/citologia
17.
F1000Res ; 8: 279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984387

RESUMO

Actin is a central component of muscle contractile apparatuses, and a number of actin mutations cause diseases in skeletal, cardiac, and smooth muscles. However, many pathogenic actin mutations have not been characterized at cell biological and physiological levels. In this study, we tested whether the nematode Caenorhabditis elegans could be used to characterize properties of actin mutants in muscle cells in vivo. Two representative actin mutations, E99K and P164A, which cause hypertrophic cardiomyopathy in humans, are introduced in a muscle-specific C. elegans actin ACT-4 as E100K and P165A, respectively. When green fluorescent protein-tagged wild-type ACT-4 (GFP-ACT-4), is transgenically expressed in muscle at low levels as compared with endogenous actin, it is incorporated into sarcomeres without disturbing normal structures. GFP-ACT-4 variants with E100K and P165A are incorporated into sarcomeres, but also accumulated in abnormal aggregates, which have not been reported for equivalent actin mutations in previous studies. Muscle contractility, as determined by worm motility, is not apparently affected by expression of ACT-4 mutants. Our results suggest that C. elegans muscle is a useful model system to characterize abnormalities caused by actin mutations.


Assuntos
Actinas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Músculo Estriado/fisiopatologia , Animais , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Humanos , Mutação
18.
J Cell Sci ; 132(4)2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659118

RESUMO

The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas/química , Proteínas Aviárias/química , Proteína de Capeamento de Actina CapZ/química , Mecanotransdução Celular , Imagem Individual de Molécula/métodos , Tropomodulina/química , Citoesqueleto de Actina , Actinas/genética , Actinas/metabolismo , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteína de Capeamento de Actina CapZ/genética , Proteína de Capeamento de Actina CapZ/metabolismo , Galinhas , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Microscopia de Força Atômica , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula/instrumentação , Estresse Mecânico , Tropomodulina/genética , Tropomodulina/metabolismo
19.
J Mol Biol ; 431(2): 308-322, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30439520

RESUMO

Rearrangement of actin filaments by polymerization, depolymerization, and severing is important for cell locomotion, membrane trafficking, and many other cellular functions. Cofilin and actin-interacting protein 1 (AIP1; also known as WDR1) are evolutionally conserved proteins that cooperatively sever actin filaments. However, little is known about the biophysical basis of the actin filament severing by these proteins. Here, we performed single-molecule kinetic analyses of fluorescently labeled AIP1 during the severing process of cofilin-decorated actin filaments. Results demonstrated that binding of a single AIP molecule was sufficient to enhance filament severing. After AIP1 binding to a filament, severing occurred with a delay of 0.7 s. Kinetics of binding and dissociation of a single AIP1 molecule to/from actin filaments followed a second-order and a first-order kinetics scheme, respectively. AIP1 binding and severing were detected preferentially at the boundary between the cofilin-decorated and bare regions on actin filaments. Based on the kinetic parameters explored in this study, we propose a possible mechanism behind the enhanced severing by AIP1.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actinas/metabolismo , Animais , Fluorescência , Cinética , Ligação Proteica/fisiologia , Coelhos , Imagem Individual de Molécula/métodos
20.
Cytoskeleton (Hoboken) ; 75(10): 427-436, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30155988

RESUMO

Tropomyosin isoforms contribute to generation of functionally divergent actin filaments. In the nematode Caenorhabditis elegans, multiple isoforms are produced from lev-11, the single tropomyosin gene, by combination of two separate promoters and alternative pre-mRNA splicing. In this study, we report that alternative splicing of lev-11 is regulated in a tissue-specific manner so that a particular tropomyosin isoform is expressed in each tissue. Reverse-transcription polymerase chain reaction analysis of lev-11 mRNAs confirms five previously reported isoforms (LEV-11A, LEV-11C, LEV-11D, LEV-11E and LEV-11O) and identifies a new sixth isoform LEV-11T. Using transgenic alternative-splicing reporter minigenes, we find distinct patterns of preferential exon selections in the pharynx, body wall muscles, intestine and neurons. The body wall muscles preferentially process splicing to produce high-molecular-weight isoforms, LEV-11A, LEV-11D and LEV-11O. The pharynx specifically processes splicing to express a low-molecular-weight isoform LEV-11E, whereas the intestine and neurons process splicing to express another low-molecular-weight isoform LEV-11C. The splicing pattern of LEV-11T was not predominant in any of these tissues, suggesting that this is a minor isoform. Our results suggest that regulation of alternative splicing is an important mechanism to express proper tropomyosin isoforms in particular tissue and/or cell types in C. elegans.


Assuntos
Processamento Alternativo/fisiologia , Caenorhabditis elegans/metabolismo , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Tropomiosina/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...