Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394294

RESUMO

Although spinach is predominantly dioecious, monoecious plants with varying proportions of female and male flowers are also present. Recently, monoecious inbred lines with highly female and male conditions have been preferentially used as parents for F1-hybrids, rather than dioecious lines. Accordingly, identifying the loci for monoecism is an important issue for spinach breeding. We here used long-read sequencing and Hi-C technology to construct SOL_r2.0_pseudomolecule, a set of six pseudomolecules of spinach chromosomes (total length: 879.2 Mb; BUSCO complete 97.0%) that are longer and more genetically complete than our previous version of pseudomolecules (688.0 Mb; 81.5%). Three QTLs, qFem2.1, qFem3.1, and qFem6.1, responsible for monoecism were mapped to SOL_r2.0_pseudomolecule. qFem3.1 had the highest LOD score and corresponded to the M locus, which was previously identified as a determinant of monoecious expression, by genetic analysis of progeny from female and monoecious plants. The other QTLs were shown to modulate the ratio of female to male flowers in monoecious plants harboring a dominant allele of the M gene. Our findings will enable breeders to efficiently produce highly female- and male-monoecious parental lines for F1-hybrids by pyramiding the three QTLs. Through fine-mapping, we narrowed the candidate region for the M locus to a 19.5 kb interval containing three protein-coding genes and one long non-coding RNA gene. Among them, only RADIALIS-like-2a showed a higher expression in the reproductive organs, suggesting that it might play a role in reproductive organogenesis. However, there is no evidence that it is involved in the regulation of stamen and pistil initiation, which are directly related to the floral sex differentiation system in spinach. Given that auxin is involved in reproductive organ formation in many plant species, genes related to auxin transport/response, in addition to floral organ formation, were identified as candidates for regulators of floral sex-differentiation from qFem2.1 and qFem6.1.


Assuntos
Melhoramento Vegetal , Spinacia oleracea , Spinacia oleracea/genética , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Ácidos Indolacéticos
2.
DNA Res ; 28(3)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142133

RESUMO

Spinach (Spinacia oleracea) is grown as a nutritious leafy vegetable worldwide. To accelerate spinach breeding efficiency, a high-quality reference genome sequence with great completeness and continuity is needed as a basic infrastructure. Here, we used long-read and linked-read technologies to construct a de novo spinach genome assembly, designated SOL_r1.1, which was comprised of 287 scaffolds (total size: 935.7 Mb; N50 = 11.3 Mb) with a low proportion of undetermined nucleotides (Ns = 0.34%) and with high gene completeness (BUSCO complete 96.9%). A genome-wide survey of resistance gene analogues identified 695 genes encoding nucleotide-binding site domains, receptor-like protein kinases, receptor-like proteins and transmembrane-coiled coil domains. Based on a high-density double-digest restriction-site associated DNA sequencing-based linkage map, the genome assembly was anchored to six pseudomolecules representing ∼73.5% of the whole genome assembly. In addition, we used SOL_r1.1 to identify quantitative trait loci for bolting timing and fruit/seed shape, which harbour biologically plausible candidate genes, such as homologues of the FLOWERING LOCUS T and EPIDERMAL PATTERNING FACTOR-LIKE genes. The new genome assembly, SOL_r1.1, will serve as a useful resource for identifying loci associated with important agronomic traits and for developing molecular markers for spinach breeding/selection programs.


Assuntos
Frutas/genética , Genoma de Planta , Locos de Características Quantitativas , Spinacia oleracea/genética , Sequenciamento Completo do Genoma , Frutas/anatomia & histologia , Genes de Plantas , Ligação Genética , Sementes/anatomia & histologia , Sementes/genética
3.
Plant Biotechnol (Tokyo) ; 37(1): 83-88, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32362752

RESUMO

Virus-induced gene silencing (VIGS) is a useful tool for functional genomics in plants. In this study, we tried to apply cucumber mosaic virus (CMV) to efficient induction of VIGS in spinach. Although VIGS for spinach had been previously developed based on two viruses (beet curly top virus and tobacco rattle virus), they still have some problems with systemic movement and long-term maintenance of VIGS in spinach. Although ordinary CMV strains infect spinach inducing distinct mosaic symptoms, using a CMV pseudorecombinant, we can modify the viral pathogenicity to attenuate viral symptoms that may mask the silencing phenotype. We here successfully demonstrated the viral ability to silence the phytoene desaturase (PDS) and the dihydroflavonol 4-reductase (DFR) genes in spinach. Because CMV could quickly induce VIGS even at 7-10 days postinoculation and the virus did not disappear even at the flowering stage, this CMV-based VIGS system would contribute to functional genomics in spinach and especially to the elucidation of molecular mechanisms for some properties unique to spinach such as plasticity of sex expression; the CMV-induced VIGS can last until the flowering stage after the virus was inoculated onto the seedling.

4.
PLoS One ; 14(4): e0214949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964889

RESUMO

Dioecy has evolved recently and independently from cosexual populations in many angiosperm lineages, providing opportunities to understand the evolutionary process underlying this transition. Spinach (Spinacia oleracea) is a dioecious plant with homomorphic sex chromosomes (XY). Although most of the spinach Y chromosome recombines with the X chromosome, a region around the male-determining locus on Y does not recombine with its X counterpart, suggesting that this region might be related to the evolution of dioecy in the species. To identify genes located in the non-recombining region (MSY, male-specific region of Y), RNA-seq analysis of male and female progeny plants (eight each) from a sib-cross of a dioecious line was performed. We discovered only 354 sex-chromosomal SNPs in 219 transcript sequences (genes). We randomly selected 39 sex-chromosomal genes to examine the reproducibility of the RNA-seq results and observed tight linkage to the male-determining locus in a spinach segregating population (140 individuals). Further analysis using a large-scale population (>1400) and over 100 spinach germplasm accessions and cultivars showed that SNPs in at least 12 genes are fully linked to the male-determining locus, suggesting that the genes reside in the spinach MSY. Synonymous substitution rates of the MSY genes and X homologues predict a recent divergence (0.40 ± 0.08 Mya). Furthermore, synonymous divergence between spinach and its wild relative (S. tetrandra), whose sex chromosomes (XY) originated from a common ancestral chromosome, predicted that the species diverged around 5.7 Mya. Assuming that dioecy in Spinacia evolved before speciation within the genus and has a monophyletic origin, our data suggest that recombination around the spinach sex-determining locus might have stopped significantly later than the evolution of dioecy in Spinacia.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Loci Gênicos , Spinacia oleracea/genética
5.
Mol Genet Genomics ; 293(2): 557-568, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29222702

RESUMO

Spinach (Spinacia oleracea L.) is a dioecious plant with male heterogametic sex determination and homomorphic sex chromosomes (XY). The dioecism is utilized for producing commercial hybrid seeds, and hence understanding the molecular-genetic basis of the species' sex determining locus is an important issue for spinach breeding. In this study, seven dominant DNA markers were shown to completely co-segregate with the male-determining gene in segregating spinach populations comprising > 1500 plants. In addition, these seven dominant DNA markers were completely associated with the male-determining gene in over 100 spinach germplasm accessions and cultivars. These observations suggest that, in spinach, a Y-chromosomal region around the male-determining locus does not (or almost not) recombine with a counterpart region on the X chromosome. Using five of the seven DNA markers, five bacterial artificial chromosome (BAC) clone contigs with a total length of approximately 690 kbp were constructed. Full sequencing of six representative BAC clones (total insert length 504 kbp) from the five contigs and a transcriptome analysis by RNA-seq revealed that the Y-chromosomal region around the male-determining locus contains large amounts of repetitive elements, suggesting that the region might be poor in gene content. Most of the repeats found in this region are novel Ty1-copia-like and its derivative elements that accumulate predominantly in heterochromatic regions. Our findings may provide valuable insight into spinach genome structure and clues for future research into the evolution of the sex determining locus.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genoma de Planta/genética , Spinacia oleracea/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Flores/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Óvulo Vegetal/genética , Pólen/genética , Sequências Repetitivas de Ácido Nucleico
6.
J Hered ; 107(7): 679-685, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563071

RESUMO

Spinach (Spinacia oleracea, 2n = 12) and sugar beet (Beta vulgaris, 2n = 18) are important crop members of the family Chenopodiaceae ss Sugar beet has a basic chromosome number of 9 and a cosexual breeding system, as do most members of the Chenopodiaceae ss. family. By contrast, spinach has a basic chromosome number of 6 and, although certain cultivars and genotypes produce monoecious plants, is considered to be a dioecious species. The loci determining male and monoecious sexual expression were mapped to different loci on the spinach sex chromosomes. In this study, a linkage map with 46 mapped protein-coding sequences was constructed for the spinach sex chromosomes. Comparison of the linkage map with a reference genome sequence of sugar beet revealed that the spinach sex chromosomes exhibited extensive synteny with sugar beet chromosomes 4 and 9. Tightly linked protein-coding genes linked to the male-determining locus in spinach corresponded to genes located in or around the putative pericentromeric and centromeric regions of sugar beet chromosomes 4 and 9, supporting the observation that recombination rates were low in the vicinity of the male-determining locus. The locus for monoecism was confined to a chromosomal segment corresponding to a region of approximately 1.7Mb on sugar beet chromosome 9, which may facilitate future positional cloning of the locus.


Assuntos
Beta vulgaris/genética , Cromossomos de Plantas , Locos de Características Quantitativas , Recombinação Genética , Cromossomos Sexuais , Spinacia oleracea/genética , Sintenia , Mapeamento Cromossômico , Ligação Genética , Variação Genética , Genoma de Planta , Repetições de Microssatélites , Fases de Leitura Aberta
7.
G3 (Bethesda) ; 5(8): 1663-73, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26048564

RESUMO

The dioecious genus Spinacia is thought to include two wild relatives (S. turkestanica Ilj. and S. tetrandra Stev.) of cultivated spinach (S. oleracea L.). In this study, nuclear and chloroplast sequences from 21 accessions of Spinacia germplasm and six spinach cultivars or lines were subjected to phylogenetic analysis to define the relationships among the three species. Maximum-likelihood sequence analysis suggested that the Spinacia plant samples could be classified into two monophyletic groups (Group 1 and Group 2): Group 1 consisted of all accessions, cultivars, and lines of S. oleracea L. and S. turkestanica Ilj. and two of five S. tetrandra Stev. accessions, whereas Group 2 was composed of the three remaining S. tetrandra Stev. accessions. By using flow cytometry, we detected a distinct difference in nuclear genome size between the groups. Group 2 also was characterized by a sexual dimorphism in inflorescence structure, which was not observed in Group 1. Interspecific crosses between the groups produced hybrids with drastically reduced pollen fertility and showed that the male is the heterogametic sex (XY) in Group 2, as is the case in S. oleracea L. (Group 1). Cytogenetic and DNA marker analyses suggested that Group 1 and Group 2 have homomorphic and heteromorphic sex chromosome pairs (XY), respectively, and that the sex chromosome pairs of the two groups evolved from a common ancestral pair. Our data suggest that the Spinacia genus may serve as a good model for investigation of evolutionary mechanisms underlying the emergence of heteromorphic sex chromosome pairs from ancestral homomorphic pairs.


Assuntos
Chenopodiaceae/genética , Cromossomos de Plantas , Núcleo Celular/genética , Chenopodiaceae/classificação , Coloração Cromossômica , Troca Genética , Genótipo , Cariotipagem , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Cromossomos Sexuais
8.
Plant Cell Rep ; 30(6): 965-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21301852

RESUMO

Spinach is basically a dioecious species, with occasional monoecious plants in some populations. Sexual dimorphism in dioecious spinach plants is controlled by an allelic pair termed X and Y located on the short arm of the longest chromosome (x = 6). Ten AFLP markers, closely linked to the X/Y locus, were identified using bulked segregant analysis, four of which were revealed to co-segregate with Y in the present mapping population. We mapped the AFLP markers and two known male-specific DNAs to a 13.4 cM region encompassing the locus. These markers will be the basis for positional cloning of the sex-determination gene. We also showed that a single, incompletely dominant gene is responsible for the highly staminate monoecious character. The gene was found to be located at a distance of 4.3 cM from microsatellite marker SO4, which mapped 1.6 cM from the X/Y locus. This indicates that the monoecious gene seems not to be allelic to but closely linked to the X/Y gene pair. SO4 will enable breeders to efficiently select highly male monoecious plants for preferential use as the pollen parent for hybrid seed production.


Assuntos
Mapeamento Cromossômico/métodos , Genes de Plantas/genética , Ligação Genética , Spinacia oleracea/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Loci Gênicos/genética , Genótipo , Padrões de Herança/genética , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase
9.
Genetics ; 180(1): 207-18, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18723889

RESUMO

Unlike animals, whose gametes are direct products of meiosis, plant meiotic products undergo additional rounds of mitosis, developing into multicellular haploid gametophytes that produce egg or sperm cells. The complex development of gametophytes requires extensive expression of the genome, with DNA-dependent RNA polymerases I, II, and III being the key enzymes for nuclear gene expression. We show that loss-of-function mutations in genes encoding key subunits of RNA polymerases I, II, or III are not transmitted maternally due to the failure of female megaspores to complete the three rounds of mitosis required for the development of mature gametophytes. However, male microspores bearing defective polymerase alleles develop into mature gametophytes (pollen) that germinate, grow pollen tubes, fertilize wild-type female gametophytes, and transmit the mutant genes to the next generation at moderate frequency. These results indicate that female gametophytes are autonomous with regard to gene expression, relying on transcription machinery encoded by their haploid nuclei. By contrast, male gametophytes make extensive use of transcription machinery that is synthesized by the diploid parent plant (sporophyte) and persists in mature pollen. As a result, the expected stringent selection against nonfunctional essential genes in the haploid state occurs in the female lineage but is relaxed in the male lineage.


Assuntos
Arabidopsis/genética , Transcrição Gênica , Alelos , Proteínas de Arabidopsis/genética , Linhagem da Célula , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Microscopia Confocal , Modelos Biológicos , Modelos Genéticos , Mutação , Fenômenos Fisiológicos Vegetais , Plantas Geneticamente Modificadas , Pólen/metabolismo
10.
Plant J ; 54(6): 1027-36, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18315539

RESUMO

In higher plants, male reproductive (pollen) development is known to be disrupted in a class of mitochondrial mutants termed cytoplasmic male sterility (CMS) mutants. Despite the increase in knowledge regarding CMS-encoding genes and their expression, definitive evidence that CMS-associated proteins actually cause pollen disruption is not yet available in most cases. Here we compare the translation products of mitochondria between the normal fertile cytoplasm and the male-sterile I-12CMS(3) cytoplasm derived from wild beets. The results show a unique 12 kDa polypeptide that is present in the I-12CMS(3) mitochondria but is not detectable among the translation products of normal mitochondria. We also found that a mitochondrial open reading frame (named orf129) was uniquely transcribed in I-12CMS(3) and is large enough to encode the novel 12 kDa polypeptide. Antibodies against a GST-ORF129 fusion protein were raised to establish that this 12 kDa polypeptide is the product of orf129. ORF129 was shown to accumulate in flower mitochondria as well as in root and leaf mitochondria. As for the CMS-associated protein (PCF protein) in petunia, ORF129 is primarily present in the matrix and is loosely associated with the inner mitochondrial membrane. The orf129 sequence was fused to a mitochondrial targeting pre-sequence, placed under the control of the Arabidopsis apetala3 promoter, and introduced into the tobacco nuclear genome. Transgenic expression of ORF129 resulted in male sterility, which provides clear supporting evidence that ORF129 is responsible for the male-sterile phenotype in sugar beet with wild beet cytoplasm.


Assuntos
Beta vulgaris/metabolismo , Proteínas Mitocondriais/metabolismo , Infertilidade das Plantas , Pólen/metabolismo , Sequência de Aminoácidos , Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , RNA/genética , RNA Mitocondrial , RNA de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transgenes
11.
Plant Physiol ; 141(4): 1694-707, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16798940

RESUMO

The Dof (DNA binding with one finger) transcriptional activator rice (Oryza sativa) prolamin box binding factor (RPBF), which is involved in gene regulation of rice seed storage proteins, has been isolated from rice cDNA expressed sequence tag clones containing the conserved Dof. RPBF is found as a single gene per haploid genome. Comparison of RPBF genomic and cDNA sequences revealed that the genomic copy is interrupted by one long intron of 1,892 bp in the 5' noncoding region. We demonstrated by transient expression in rice callus protoplasts that the isolated RPBF trans-activated several storage protein genes via an AAAG target sequence located within their promoters, and with methylation interference experiments the additional AAAG-like sequences in promoters of genes expressed in maturing seeds were recognized by the RPBF protein. Binding was sequence specific, since mutation of the AAAG motif or its derivatives decreased both binding and trans-activation by RPBF. Synergism between RPBF and RISBZ1 recognizing the GCN4 motif [TGA(G/C)TCA] was observed in the expression of many storage protein genes. Overexpression of both transcription factors gave rise to much higher levels of expression than the sum of individual activities elicited by either RPBF or RISBZ1 alone. Furthermore, mutation of recognition sites suppressed reciprocal trans-activation ability, indicating that there are mutual interactions between RISBZ1 and RPBF. The RPBF gene is predominantly expressed in maturing endosperm and coordinately expressed with seed storage protein genes, and is involved in the quantitative regulation of genes expressed in the endosperm in cooperation with RISBZ1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Dosagem de Genes , Dados de Sequência Molecular , Oryza/embriologia , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Protoplastos/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Ativação Transcricional
12.
Cell ; 120(5): 613-22, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15766525

RESUMO

All eukaryotes have three nuclear DNA-dependent RNA polymerases, namely, Pol I, II, and III. Interestingly, plants have catalytic subunits for a fourth nuclear polymerase, Pol IV. Genetic and biochemical evidence indicates that Pol IV does not functionally overlap with Pol I, II, or III and is nonessential for viability. However, disruption of the Pol IV catalytic subunit genes NRPD1 or NRPD2 inhibits heterochromatin association into chromocenters, coincident with losses in cytosine methylation at pericentromeric 5S gene clusters and AtSN1 retroelements. Loss of CG, CNG, and CNN methylation in Pol IV mutants implicates a partnership between Pol IV and the methyltransferase responsible for RNA-directed de novo methylation. Consistent with this hypothesis, 5S gene and AtSN1 siRNAs are essentially eliminated in Pol IV mutants. The data suggest that Pol IV helps produce siRNAs that target de novo cytosine methylation events required for facultative heterochromatin formation and higher-order heterochromatin associations.


Assuntos
Arabidopsis/enzimologia , Núcleo Celular/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Heterocromatina/enzimologia , RNA Interferente Pequeno/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico/genética , Núcleo Celular/genética , Metilação de DNA , RNA Polimerases Dirigidas por DNA/genética , Evolução Molecular , Heterocromatina/genética , Dados de Sequência Molecular , Mutação/genética , Filogenia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , tRNA Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA