Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37370416

RESUMO

The Yellow-legged Hornet (Vespa velutina nigrithorax) (YLH) is an invasive insect that arrived in Europe in 2004 and is now spread across nine countries. It is a threat to the native entomofauna and harmful to beekeeping and agriculture, as it is a ravenous predator of the European Honey Bee (Apis mellifera) and other pollinating species. Its expansion has been unstoppable and all resources are needed to fight against it, including native vertebrate predators. Among these, the European Bee-eater (Merops apiaster) (EBE) is a potential one, but little is known about its predation on YLH. In a study carried out in Portugal, remains of YHL were detected in EBE nesting sites, which, to the best of our knowledge, is the first such report. This means that this bird could be one more agent in the biological control of this pest (although research on predation intensity is still needed), in conjunction with other natural predators and other strategies. In the Iberian Peninsula, both species are allopatric in vast regions, so the role of EBE may be more limited. However, in the rest of Europe, at a country or continent scale, the scenario may be different and sympatry may occur to a greater extent.

2.
Mol Phylogenet Evol ; 134: 269-281, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30763758

RESUMO

Population range expansions and contractions as a response to climate and habitat change throughout the Quaternary are known to have contributed to complex phylogenetic and population genetic events. Speciation patterns and processes in Palearctic buzzards (genus Buteo) are a long-standing example of morphological and genetic data incongruence, attributed to panmixia, habitat range shifts, contact zones, and climate change. Here we assess the systematics, phylogeography and population genetic structure of three nominal species of Palearctic buzzards, Buteo buteo (including B. b. vulpinus), B. rufinus (including B. r. cirtensis) and B. hemilasius. Phylogenetic analyses inferred from mitochondrial data recover B. hemilasius as sister to the sister clades B. r. rufinus and B. buteo complex (B. b. buteo, B. b. vulpinus, but also including B. r. cirtensis). In contrast, we find an unresolved genetic delimitation inferred from four nuclear loci, suggesting an ancestral genetic pool for all species. Time-trees suggest population contractions and expansions throughout the Pleistocene, which likely reflect habitat change and contrasting ecological niche requirements between species. Microsatellite-based extended Bayesian skyline plots reveal relatively constant population sizes for B. hemilasius, B. r. rufinus, and B. b. vulpinus, in contrast to a dramatic population expansion in B. r. cirtensis within the last 3 kya. Overall, our study illustrates how complex population processes over the Late Pleistocene have shaped the patterns of genetic divergence in Palearctic buzzards, due to the joint effects of shared ancestral polymorphisms, population expansions and contractions, with hybridization at contact zones leading to admixture and introgression.


Assuntos
Aves/genética , Variação Genética , Genética Populacional , Paleontologia , Animais , Regiões Árticas , Teorema de Bayes , Mudança Climática , DNA Mitocondrial/genética , Demografia , Marcadores Genéticos , Haplótipos/genética , Repetições de Microssatélites/genética , Mitocôndrias/genética , Taxa de Mutação , Filogenia , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...