Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 79(4): 815-831, nov. 2023.
Artigo em Inglês | IBECS | ID: ibc-227555

RESUMO

Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein with pleiotropic functions, which is expressed in adipose, hepatic, muscular, and pancreatic tissue. Particularly, several studies demonstrated that SPARC is an important player in the context of obesity, diabetes, and fatty liver disease including advanced hepatic fibrosis and hepatocellular carcinoma. Evidence in murine and human samples indicates that SPARC is involved in adipogenesis, cellular metabolism, extracellular matrix modulation, glucose and lipid metabolism, among others. Furthermore, studies in SPARC knockout mouse model showed that SPARC contributes to adipose tissue formation, non-alcoholic fatty liver disease (NAFLD), and diabetes. Hence, SPARC may represent a novel and interesting target protein for future therapeutic interventions or a biomarker of disease progression. This review summarizes the role of SPARC in the pathophysiology of obesity, and extensively revised SPARC functions in physiological and pathological adipose tissue deposition, muscle metabolism, liver, and diabetes-related pathways. (AU)


Assuntos
Animais , Camundongos , Diabetes Mellitus Tipo 2/complicações , Hepatopatia Gordurosa não Alcoólica/etiologia , Cisteína , Camundongos Knockout , Obesidade/metabolismo , Osteonectina/genética , Osteonectina/metabolismo
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834291

RESUMO

The severity of non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to steatohepatitis, and it is not yet clearly understood which patients will progress to liver fibrosis or cirrhosis. SPARC (Secreted Protein Acidic and Rich in Cysteine) has been involved in NAFLD pathogenesis in mice and humans. The aim of this study was to investigate the role of SPARC in inflammasome activation, and to evaluate the relationship between the hepatic expression of inflammasome genes and the biochemical and histological characteristics of NAFLD in obese patients. In vitro studies were conducted in a macrophage cell line and primary hepatocyte cultures to assess the effect of SPARC on inflammasome. A NAFLD model was established in SPARC knockout (SPARC-/-) and SPARC+/+ mice to explore inflammasome activation. A hepatic RNAseq database from NAFLD patients was analyzed to identify genes associated with SPARC expression. The results were validated in a prospective cohort of 59 morbidly obese patients with NAFLD undergoing bariatric surgery. Our results reveal that SPARC alone or in combination with saturated fatty acids promoted IL-1ß expression in cell cultures. SPARC-/- mice had reduced hepatic inflammasome activation during the progression of NAFLD. NAFLD patients showed increased expression of SPARC, NLRP3, CASP1, and IL-1ß. Gene ontology analysis revealed that genes positively correlated with SPARC are linked to inflammasome-related pathways during the progression of the disease, enabling the differentiation of patients between steatosis and steatohepatitis. In conclusion, SPARC may play a role in hepatic inflammasome activation in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade Mórbida/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Estudos Prospectivos
3.
J Physiol Biochem ; 79(4): 815-831, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36018492

RESUMO

Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein with pleiotropic functions, which is expressed in adipose, hepatic, muscular, and pancreatic tissue. Particularly, several studies demonstrated that SPARC is an important player in the context of obesity, diabetes, and fatty liver disease including advanced hepatic fibrosis and hepatocellular carcinoma. Evidence in murine and human samples indicates that SPARC is involved in adipogenesis, cellular metabolism, extracellular matrix modulation, glucose and lipid metabolism, among others. Furthermore, studies in SPARC knockout mouse model showed that SPARC contributes to adipose tissue formation, non-alcoholic fatty liver disease (NAFLD), and diabetes. Hence, SPARC may represent a novel and interesting target protein for future therapeutic interventions or a biomarker of disease progression. This review summarizes the role of SPARC in the pathophysiology of obesity, and extensively revised SPARC functions in physiological and pathological adipose tissue deposition, muscle metabolism, liver, and diabetes-related pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Osteonectina/genética , Osteonectina/metabolismo , Cisteína , Diabetes Mellitus Tipo 2/complicações , Obesidade/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...