Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Biopharm Drug Dispos ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646776

RESUMO

This study aimed to control the oral absorption of cyclosporine A (CsA) with the use of a mucosal drug delivery system (mDDS). Mucopenetrating nanocarriers (MP/NCs) and mucoadhesive nanocarriers (MA/NCs) were prepared by flash nanoprecipitation employing polystyrene-block-poly(ethylene glycol) and polystyrene-block-poly(N,N-dimethyl aminoethyl methacrylate), respectively. Their particle distribution in the rat gastrointestinal tract were visualized by fluorescent imaging. Plasma concentrations were monitored after oral administration of CsA-loaded MP/NCs (MP/CsA) and MA/NCs (MA/CsA) to rats. MP/NCs and MA/NCs had a particle size below 200 nm and ζ-potentials of 4 and 40 mV, respectively. The results from in vitro experiments demonstrated mucopenetration of MP/NCs and mucoadhesion of MA/NCs. Confocal laser scanning microscopic images showed diffusion of MP/NCs in the gastrointestinal mucus towards epithelial cells and localization of MA/NCs on the surface of the gastrointestinal mucus layer. In a pH 6.8 solution, rapid and sustained release of CsA were observed for MP/CsA and MA/CsA, respectively. After oral dosing (10 mg-CsA/kg) to rats, amorphous CsA powder exhibited a time to maximum plasma concentration (Tmax) of 3.4 h, maximum plasma concentration (Cmax) of 0.12 µg/mL, and bioavailability of 0.7%. Compared with amorphous CsA powder, MP/CsA shortened Tmax by 1.1 to 2.3 h and increased the bioavailability by 43-fold to 30.1%, while MA/CsA prolonged Tmax by 3.4 to 6.8 h with Cmax and bioavailability of 0.65 µg/mL and 11.7%, respectively. These pharmacokinetic behaviors would be explained by their diffusion and release properties modulated by polymeric surface modification. The mDDS approach is a promising strategy for the pharmacokinetic control of orally administered CsA.

2.
Pharm Dev Technol ; : 1-5, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38656248

RESUMO

This study was the first attempt to visualize pulmonary retention of nanocarriers (NCs) with the use of the P2 probe, a new water-initiated aggregation-caused fluorescent-quenching (ACQ) dye, for the development of NCs with long-lasting retention in the respiratory system (RS). Flash nanoprecipitation was used to fabricate mucopenetrating NCs (MP/NCs) and mucoadhesive NCs (MA/NCs). Both NCs were labeled with the P2 probe, and their distribution and retention in RS were visualized after intratracheal administration to rats. MP/NCs and MA/NCs had a mean diameter below 200 nm and ζ-potential of 0 and 48 mV, respectively. MA/NCs showed three times stronger interactions with mucin than MP/NCs, resulting in significantly lower diffusiveness in mucus. The P2 probe exhibited an ACQ effect with negligible rekindling in simulated lung fluid, and the spectroscopic data suggested applicability to reliable imaging of insufflated NCs. In confocal laser scanning microscopic and in vivo imaging system images of the rat RS, MA/NCs were locally deposited in the respiratory tract and transported toward the pharynx by mucocilliary clearance (MCC). In contrast, MP/NCs diffused in the respiratory mucus were less subject to the influence of MCC. Based on the results from the bioimaging study using the P2 probe, MP/NCs could offer enhanced pulmonary retention of drugs compared with MA/NCs.

3.
Pharm Res ; 41(4): 673-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472609

RESUMO

PURPOSE: The purpose of this study was to develop a simulation model for the pharmacokinetics (PK) of drugs undergoing enterohepatic circulation (EHC) with consideration to the environment in the gastrointestinal tract in the fed state in humans. The investigation particularly focused on the necessity of compensating for the permeability rate constant in the reabsorption process in consideration of drug entrapment in bile micelles. METHODS: Meloxicam and ezetimibe were used as model drugs. The extent of the entrapment of drugs inside bile micelles was evaluated using the solubility ratio of Fed State Simulated Intestinal Fluid version 2 (FeSSIF-V2) to Fasted State Simulated Intestinal Fluid version 2 (FaSSIF-V2). Prediction accuracy was evaluated using the Mean Absolute Percentage Error (MAPE) value, calculated from the observed and predicted oral PK profiles. RESULTS: The solubilization of ezetimibe by bile micelles was clearly observed while that of meloxicam was not. Assuming that only drugs in the free fraction of micelles permeate through the intestinal membrane, PK simulation for ezetimibe was performed in both scenarios with and without compensation by the permeation rate constant. The MAPE value of Zetia® tablet, containing ezetimibe, was lower with compensation than without compensation. By contrast, Mobic® tablet, containing meloxicam, showed a relatively low MAPE value even without compensation. CONCLUSION: For drugs which undergo EHC and can be solubilized by bile micelles, compensating for the permeation rate constant in the reabsorption process based on the free fraction ratio appears an important factor in increasing the accuracy of PK profile prediction.


Assuntos
Circulação Êntero-Hepática , Micelas , Humanos , Meloxicam , Solubilidade , Ezetimiba , Comprimidos
4.
Pharmaceutics ; 15(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38140049

RESUMO

Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane from foreign substances; however, in the absorption process after oral administration, it can also disturb effective drug absorption by trapping it in the biological sieve structured by mucin, a major component of mucus, and eliminating it by mucus turnover. Recently, functional nanocarriers (NCs) have attracted much attention due to their immense potential and effectiveness in the field of oral drug delivery. Among them, NCs with mucopenetrating and mucoadhesive properties are promising dosage options for controlling drug absorption from the GI tracts. Mucopenetrating and mucoadhesive NCs can rapidly deliver encapsulated drugs to the absorption site and/or prolong the residence time of NCs close to the absorption membrane, providing better medications than conventional approaches. The surface characteristics of NCs are important factors that determine their functionality, owing to the formation of various kinds of interactions between the particle surface and mucosal components. Thus, a deeper understanding of surface modifications on the biopharmaceutical characteristics of NCs is necessary to develop the appropriate mucosal drug delivery systems (mDDS) for the treatment of target diseases. This review summarizes the basic information and functions of the mucosal layer, highlights the recent progress in designing functional NCs for mDDS, and discusses their performance in the GI tract.

5.
Pharmaceutics ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004541

RESUMO

In this study, we developed stabilized astaxanthin (AX) nanoparticles (sNP/AX) to improve the physicochemical properties, oral bioavailability, and hepatoprotection of AX. A flash nanoprecipitation technique was used with a multi-inlet vortex mixer to prepare the sNP/AX. Vitamins E (VE) and C (VC) were used as co-stabilizers with poloxamer 407 as a stabilizer to inhibit the oxidative degradation of AX during sNP/AX formation and storage. VC stabilized AX in the aqueous phase during the preparation, whereas VE markedly improved the storage stability of sNP/AX, as evidenced by the AX contents remaining at 94 and 81% after 12 weeks of storage at 4 °C and 25 °C, respectively. The mean sNP/AX diameter was 215 nm, which resulted in higher AX release properties than those of crystalline AX. Rats, orally administered sNP/AX (33.2 mg AX/kg), exhibited higher systemic exposure to AX, whereas oral absorption in the crystalline AX group was negligible. In the rat hepatic injury model, oral pretreatment with sNP/AX (33.2 mg AX/kg) markedly attenuated hepatic damage, as shown by the histopathological analysis and reduced levels of plasma biomarkers for hepatic injury. These findings suggest that strategically including antioxidative additives in the sNP/AX has the potential to improve the physicochemical and nutraceutical properties of AX.

6.
Chem Pharm Bull (Tokyo) ; 71(10): 787-791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779081

RESUMO

The aim of this study was to develop a self-micellizing solid dispersion of celecoxib (SMSD/CEL) with enhanced dissolution to suppress a delay in absorption under impairment of gastrointestinal (GI) secretion and motility induced by severe pain. Soluplus®-based SMSD/CEL was prepared by lyophilization and physiochemically characterized. A pharmacokinetic study of orally-dosed CEL samples was carried out in rats with propantheline (PPT)-induced the impairment of GI secretion and motility. SMSD/CEL was micellized in aqueous media with a mean diameter of 153 nm, and it showed improved dissolution behavior of CEL under acidic conditions with 2.1-fold higher dissolved CEL at 120 min than crystalline CEL. SMSD/CEL was found to be in an amorphous state, and there was no significant crystallization even after storage under accelerated conditions for 8 weeks, indicating relatively high storage stability of the amorphous form. Orally-dosed crystalline CEL in PPT-treated rats showed a delayed mean absorption time (MAT) and area under the curve of plasma concentration versus time from 0 to 4 h (AUC0-4) was reduced to 12% compared with that in normal rats, whereas SMSD/CEL suppressed the delay and decrease of absorption in PPT-treated rats. From these findings, SMSD/CEL might be efficacious to suppress poor and delayed absorption of CEL for better pain medication in the presence of impaired GI secretion and motility associated with severe pain.


Assuntos
Motilidade Gastrointestinal , Micelas , Ratos , Animais , Celecoxib/farmacologia , Ratos Sprague-Dawley , Solubilidade , Dor
7.
Pharm Dev Technol ; 28(9): 877-883, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828716

RESUMO

The present study aimed to develop solid lipid nanoparticles of lutein (SLN/LT) with improved dissolution behavior and oral absorption. SLN/LT were prepared by a flash nanoprecipitation method using a multi-inlet vortex mixer, and their physicochemical, photochemical, and pharmacokinetic properties were evaluated. The mean particle size of SLN/LT re-dispersed in water was 237 nm, and small spherical particles with no significant aggregation were observed. LT significantly generated singlet oxygen upon exposure to pseudo-sunlight (250 W/m2, 1 h), suggesting its high photoreactivity. The remaining LT in LT solution, crystalline LT, and SLN/LT after irradiation with pseudo-sunlight (250 W/m2, 2 h) were 56.3, 86.7, and 101%, respectively. SLN/LT showed improved dissolution behavior of LT in simulated intestinal fluid, and the dissolved amounts of LT at 2 h were at least 50 times higher than that of crystalline LT. Orally administered SLN/LT (100 mg-LT/kg) exhibited enhanced oral absorption of LT, as evidenced by a relative bioavailability of 3.7 to crystalline LT in rats. SLN/LT may be a promising dosage form for orally available LT supplements, possibly leading to enhanced nutritional functions of LT.


Assuntos
Luteína , Nanopartículas , Ratos , Animais , Lipídeos/química , Nanopartículas/química , Fenômenos Químicos , Tamanho da Partícula , Administração Oral , Disponibilidade Biológica
8.
Biopharm Drug Dispos ; 44(6): 387-395, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37526477

RESUMO

The present study was undertaken to develop a self-micellizing solid dispersion (SMSD) of tacrolimus (TAC) to improve the biopharmaceutical properties of TAC. An SMSD formulation of TAC (SMSD/TAC) and amorphous solid dispersion formulation of TAC (ASD/TAC) were prepared with Soluplus® , an amphiphilic copolymer, and hydroxypropyl cellulose, respectively. Physicochemical properties were characterized in terms of morphology, crystallinity, storage stability, interaction of TAC with Soluplus® , and micelle-forming potency; pharmacokinetic behavior was also evaluated in rats. Tacrolimus in both formulations was in an amorphous state. After storage at 40°C/75% relativity humidity for 4 weeks, there were no significant changes in the crystallinity of TAC between nonaged and aged SMSD/TAC, whereas slight recrystallization was observed in aged ASD/TAC. The results of circular dichroism (CD) and infrared spectroscopic analyses were indicative of the potent drug-polymer interaction in SMSD/TAC, possibly leading to the prevention of recrystallization. Compared with other TAC samples, SMSD/TAC exhibited significant improvement in the dissolution behavior of TAC through the immediate formation of fine micelles. After the oral administration of TAC samples (10 mg TAC/kg) to rats, there was marked enhancement in systemic exposure to TAC with both formulations; in particular, SMSD/TAC achieved an increase in bioavailability ca. 20-fold higher than crystalline TAC. The SMSD approach might provide an effective dosage form for TAC with enhanced physicochemical stability and oral absorption.


Assuntos
Polietilenoglicóis , Tacrolimo , Ratos , Animais , Ratos Sprague-Dawley , Solubilidade , Micelas , Disponibilidade Biológica , Administração Oral
9.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513199

RESUMO

The aim of the present study was to develop an injectable hydrogel (HG) formulation of fuzapladib sodium (FZP), an animal drug for acute pancreatitis (AP), with the use of polyethyleneoxide (PEO) and polylysine (pLys), a cationic polymer. A mixture of pLys and FZP was added to PEO to prepare an HG formulation, and the formulation was optimized by release test and viscosity measurements. Circular dichroism (CD) and infrared absorption (IR) spectral analyses were applied to clarify the intermolecular interactions between FZP and pLys. The pharmacokinetic behavior of FZP was evaluated after a subcutaneous administration of FZP samples (2.0 mg-FZP/kg) to rats. Although the immediate release of FZP was observed for the HG formulation, the addition of pLys at a 20-fold amount of FZP or higher led to the sustained release of FZP. Considering release behavior, the concentration of pLys was optimized as 100-fold that of FZP in the HG formulation. CD and IR spectroscopic analyses of FZP and/or pLys demonstrated an intermolecular interaction between FZP and pLys, as evidenced by the slight spectral transition. After a subcutaneous administration of HG formulation containing pLys to rats, compared with FZP alone, significant differences were observed in the pharmacokinetic behavior with a decrease of Cmax from 2.3 to 0.9 mg/mL and slower elimination kinetics. HG formulation using pLys might be a viable dosage option for FZP for the treatment of AP in animals.


Assuntos
Pancreatite , Polilisina , Ratos , Animais , Polilisina/química , Hidrogéis , Preparações de Ação Retardada/química , Antígeno-1 Associado à Função Linfocitária , Doença Aguda , Leucócitos
10.
Yakugaku Zasshi ; 143(4): 349-352, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37005235

RESUMO

The mucosal drug delivery system (mDDS) is one of the promising approaches to control the pharmacokinetic behavior of drugs. In this approach, surface properties of drug nanoparticles are key determinants to provide particles with mucoadhesive and mucopenetrating properties for prolonged retention at mucosal tissue and rapid mucosal absorption, respectively. In this paper, we would like to discuss the preparation of mDDS formulations by flash nanoprecipitation using a four-inlet multi-inlet vortex mixer, in vitro and ex vivo evaluation of mucopenetrating and mucoadhesive properties of polymeric nanoparticles as well as the application of mDDS to the pharmacokinetic control of cyclosporine A after oral administration to rats. We also share our current research on in silico modeling and prediction of the pharmacokinetic behavior of drugs after intratracheal administration to rats.


Assuntos
Mucosa , Nanopartículas , Ratos , Animais , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Administração Oral , Composição de Medicamentos
11.
Health Sci Rep ; 6(4): e1186, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021013

RESUMO

Background and Aims: Burning mouth syndrome (BMS) causes burning or uncomfortable feelings in the oral cavity without any obvious injuries. This condition's etiopathogenesis is still unknown, consequently, BMS management is very challenging. Alpha-lipoic acid (ALA) is a naturally occurring potent bioactive compound that has been found to be useful in the management of BMS in many studies. Therefore, we conducted a comprehensive systematic review to investigate the usefulness of ALA in the management of BMS based on randomized controlled trials (RCTs). Methods: Different electronic databases, including PubMed, Scopus, Embase, Web of Science, and Google Scholar, were extensively searched to find relevant studies. Results: This study included nine RCTs that matched the inclusion criteria. In most studies, ALA was given at a dose of 600-800 mg/day, with up to two months of follow-up. The majority of studies (six out of nine studies) indicated that ALA was more effective in BMS patients than in the placebo-controlled group. Conclusions: This comprehensive systematic review provides evidence of the positive outcomes of the treatment of BMS with ALA. However, more research might be needed before ALA can be considered the first-line therapy for BMS.

12.
Pharmaceutics ; 15(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839893

RESUMO

This study aimed to develop a cyclosporine A (CsA)-loaded ternary solid dispersion (tSD/CsA) to improve the storage stability of a solid dispersion (SD) system and the oral absorbability of CsA. Hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were selected as carrier materials of tSD, and tSD/CsA was prepared with a fine droplet drying process, a powderization technology that employs an inkjet head. The physicochemical properties of tSD/CsA were evaluated in terms of morphology, storage stability, dissolution behavior, and mucoadhesive property. After the oral administration of CsA samples (10 mg-CsA/kg) to rats, the plasma concentration of CsA was monitored to estimate oral absorbability. tSD/CsA comprised uniform shriveled particles with a diameter of 3.4 mm and span factor of 0.4, which is a parameter to estimate the particle size distribution. Although HPC-based binary SD showed marked aggregation of the particles after storage under 40 °C/75% relative humidity, there were no significant aggregations of tSD/CsA, due to the relatively low hygroscopic property of HPMCAS. The pH-dependent release of CsA with improved dissolution was observed in tSD/CsA. In the in vitro mucoadhesive evaluation using a mucin disk, tSD/CsA exhibited a better mucoadhesive property than HPC-based SD, possibly leading to prolonged retention of tSD particles in the gastrointestinal tract after oral administration. Orally-dosed tSD/CsA in rats resulted in significantly improved oral absorption of CsA, as evidenced by a 27-fold higher bioavailability than amorphous CsA. tSD/CsA may be a promising dosage option to improve the storage stability of a SD system and the biopharmaceutical properties of CsA.

13.
J Sci Food Agric ; 103(6): 2981-2988, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36350072

RESUMO

BACKGROUND: The present study was aimed to develop astaxanthin (AX)-loaded liposomes by the utilization of soybean phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) to improve the nutraceutical properties of AX. AX-loaded liposomes consisting of PC (PC/AX) and LPC (LPC/AX) were evaluated in terms of particle size distribution, morphology, release characteristics, pharmacokinetic behavior, and nephroprotective effects in a rat model of acute kidney injury. RESULTS: PC/AX and LPC/AX had uniform size distributions with a mean particle size of 254 and 148 nm, respectively. Under pH 6.8 conditions, both liposomes exhibited improved dissolution behavior of AX compared with crystalline AX (cAX). In particular, LPC/AX showed a sevenfold higher release of AX than PC/AX. After the oral administration of LPC/AX (33.2 mg AX kg-1 ) to rats, there was a significant increase in systemic exposure to AX, as evidenced by a 15-fold higher AUC0-24 h than PC/AX. However, the oral absorption of AX in the cAX group was negligible. Based on the results of histological analysis and measurement of plasma biomarkers, LPC/AX exhibited improved nephroprotective effects of AX in the rat model of kidney injury. CONCLUSION: From these observations, a strategic application of the LPC-based liposomal approach might be a promising option to improve the nutraceutical properties of AX. © 2022 Society of Chemical Industry.


Assuntos
Lipossomos , Lisofosfatidilcolinas , Ratos , Animais , Lisofosfatidilcolinas/farmacologia , Xantofilas , Tamanho da Partícula , Fosfatidilcolinas
14.
J Toxicol Sci ; 47(11): 483-492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36328538

RESUMO

A reactive oxygen species (ROS) assay has been widely used for photosafety assessment; however, the phototoxic potential of complex materials, including plant extracts, essential oils, and functional polymers, is unevaluable because of their undefined molecular weights. The present study was undertaken to modify the ROS assay protocol for evaluating phototoxic potentials of those materials with use of their apparent molecular weight (aMw). On preparing sample solutions for the ROS assay, aMw ranging from 150 to 350 was tentatively employed for test substances. The modified ROS assays were applied to 45 phototoxic and 19 non-phototoxic substances, including 44 chemicals and 20 complex materials (plant extracts) for clarification of the predictive performance. Generation of ROS from photo-irradiated samples tended to increase as aMW grew, resulting in the largest number of false-positive predictions at aMW of 350. Some false-negative predictions were also observed when aMW was set at 200 or less. At aMw of 250, all tested phototoxic substances could be correctly identified as photoreactive with no false-negative predictions. Based on these observations, aMw of 250 was found to be suitable for the ROS assay on complex materials, and the sensitivity, specificity, and positive and negative predictivity for the proposed ROS assay were calculated to be 100, 52.6, 83.3, and 100%, respectively. Thus, the proposed approach may be efficacious for predicting phototoxic potentials of complex materials and contribute to the development of new products with a wide photosafety margin.


Assuntos
Dermatite Fototóxica , Humanos , Espécies Reativas de Oxigênio , Dermatite Fototóxica/etiologia , Bioensaio , Extratos Vegetais , Raios Ultravioleta
16.
Eur J Pharm Biopharm ; 180: 23-32, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36154905

RESUMO

This study aimed to develop a novel in silico modeling and simulation that considers the disintegration rate in the stomach to predict the in vivo performance of oral solid dosage forms with slow disintegration rates containing poorly soluble weak base drugs. Oxatomide and manidipine hydrochloride were used as model drugs. First, the in vitro disintegration rate and dissolution rate were determined in biorelevant media that simulate the gastrointestinal fluids in fasted humans using a USP apparatus II paddle dissolution tester. Next, the oral absorption of the dosage forms was predicted using the novel simulation model coupled with not only the dissolution rate but also the estimated disintegration rate. As the in vitro disintegration time was 45 min or longer for both drugs in Fasted State Simulated Gastric Fluid, the disintegration rate of these dosage forms was considered slow as immediate release (IR) tablets. While the predicted and observed pharmacokinetic profiles of both drugs were comparable using the new model, the conventional model, which did not consider the disintegration step, underestimated the oral absorption of both drugs. Thus, our novel simulation model coupled with the disintegration rate estimated from in vitro tests is promising for predicting the in vivo performance of oral solid dosage forms with slow disintegration rates containing poorly soluble weak base drugs.


Assuntos
Modelos Biológicos , Estômago , Humanos , Solubilidade , Administração Oral , Comprimidos/farmacocinética , Simulação por Computador
17.
Drug Dev Ind Pharm ; 48(6): 239-246, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35875919

RESUMO

R-α-lipoic acid (RLA) and dihydrolipoic acid (DHLA), a reduced form of RLA, are potent endogenous antioxidants that can reduce oxidative damage. Despite their numerous nutraceutical potentials, clinical applications of RLA are still limited due to its poor solubility and stability problems. This study aimed to develop an RLA-loaded liposome (LIP/RLA) for the improvement of nutraceutical properties. LIP/RLA was developed by a typical solvent injection method. Uniform liposomes of LIP/RLA were observed by transmission electron microscopy, and the mean particle size was calculated to be ∼150 nm from the data of dynamic light scattering. LIP/RLA could prevent the degradation of RLA even under acidic conditions (pH 1.2) possibly due to the encapsulation of RLA into the liposomal structure. In the release test under pH6.8 with lipase, LIP/RLA showed relatively rapid release of RLA, possibly due to the lipolysis of phospholipids by lipase. After the oral administration of LIP/RLA (10 mg-RLA/kg, p.o.) in rats, the systemic exposures of RLA and DHLA increased by 2.8- and 5.8-fold, respectively. In a rat model of acute hepatic injury induced by carbon tetrachloride (CCl4) (0.7 mL-CCl4/kg, p.o.), orally dosed LIP/RLA (3 mg-RLA/kg, p.o.) resulted in 78.7% and 86.4% reductions of plasma alanine aminotransferase, and aspartate aminotransferase, respectively; however, RLA was found to be less effective possibly due to the poor oral absorption. The RLA-loaded liposomal system might be a promising carrier for poorly water-soluble materials with poor stability under acidic conditions, as well as RLA, to improve their oral absorption and nutraceutical properties.


Assuntos
Ácido Tióctico , Animais , Tetracloreto de Carbono , Suplementos Nutricionais , Lipase , Lipossomos , Ratos , Ácido Tióctico/química , Ácido Tióctico/farmacologia
18.
Pharm Dev Technol ; 27(5): 565-571, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35694736

RESUMO

The aim of the present study was to develop and evaluate stabilized injection solutions of fuzapladib sodium hydrate using antioxidants as the stabilizers. To estimate the possible degradation factors and pathways of fuzapladib, forced degradation studies were conducted under thermal, acid, base, oxidative, and light conditions. To select an optimal excipient to stabilize fuzapladib under a solution state, a screening study of antioxidants was carried out to evaluate their effects to inhibit the degradation. The influence of the selected stabilizers on its pharmacokinetic behavior was evaluated in rats after intravenous administration. On the basis of data from the forced degradation study, thermal and oxidative stresses were significant factors accelerating the degradation of fuzapladib. Among eight tested antioxidants, vitamin C (VC) was the most effective stabilizer to suppress the accelerated degradation by heating, as evidenced by 45% inhibition of the degradation. The stabilization effect was enhanced depending on the concentration of VC. After the intravenous administration of fuzapladib (0.5 mg/kg) with or without VC (2.1 mg/kg), there were no significant differences between the pharmacokinetic behaviors of each group. From these findings, VC might be a promising excipient to stabilize the injection solution of fuzapladib without significant influence on its pharmacokinetic behavior.


Assuntos
Ácido Ascórbico , Excipientes , Animais , Antioxidantes/farmacocinética , Oxirredução , Estresse Oxidativo , Ratos
19.
Mol Pharm ; 19(5): 1468-1476, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35353535

RESUMO

Quercetin (QUE)-loaded poly(lipoic acid) nanoparticles (QUE/pLA) were developed to improve chemical stability in the gastrointestinal (GI) tract, oral bioavailability (BA), and pharmacological properties of QUE. QUE/pLA was prepared by emulsion solvent evaporation with ultrasonication followed by freeze-drying. Its mean particle size was 185 nm, with a high encapsulation efficiency of QUE (84.8%). QUE/pLA exhibited sustained release of QUE with improved dissolution compared with crystalline QUE and significantly enhanced chemical stability under physiological pH in the GI tract. Orally dosed QUE/pLA (50 mg QUE/kg) in rats exhibited significantly prolonged systemic exposure, possibly due to the sustained release of QUE. The oral BAs of QUE in QUE/pLA and crystalline QUE groups were 29 and 0.19%, respectively, suggesting significant enhancement of oral absorbability, likely due to the improved stability and dissolution property of QUE in the GI tracts. In hepatic injury model rats, QUE/pLA (50 mg QUE/kg) led to marked reductions in the plasma biomarker levels of alanine aminotransferase and aspartate aminotransferase by 70 and 46%, respectively, compared with the vehicle group. QUE/pLA also showed improved antioxidant potential as evidenced by the enhanced activities of hepatic glutathione, superoxide dismutase, and a decrease in the level of malondialdehyde, a marker of lipid peroxidation. Based on these findings, QUE/pLA might be a promising option to improve both the nutraceutical and pharmaceutical properties of QUE.


Assuntos
Nanopartículas , Ácido Tióctico , Animais , Disponibilidade Biológica , Preparações de Ação Retardada , Nanopartículas/química , Quercetina/química , Ratos
20.
Biopharm Drug Dispos ; 43(3): 89-97, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35322875

RESUMO

This study aimed to develop an oral nanocrystal solid dispersion (nCSD) of fuzapladib (FZP) with enhanced absorbability for the treatment of acute pancreatitis (AP). The hydration properties of crystalline FZP free acid (crystalline FZP) and FZP sodium salt (FZP/Na) were assessed to select a stable crystal form. The nCSD of FZP free acid (nCSD/FZP) was prepared using a multi-inlet vortex mixer and evaluated in terms of physicochemical and pharmacokinetic properties. The results of X-ray powder diffraction analysis indicated that crystalline FZP was stable as an anhydrate, while FZP/Na was converted to its monohydrate at water activity of above 0.2. The nanocrystals in nCSD/FZP were dispersed in hydroxy propyl cellulose-SSL, and their mean particle size were 160 nm with uniform spherical shape. In dissolution testing, nCSD/FZP exhibited rapid dissolution compared with crystalline FZP and reached a saturated concentration of FZP within initial 30 min. After oral administration (2 mg-FZP/kg) to rats, the maximum plasma concentration and bioavailability were 7.3- and 5.2-fold higher for nCSD/FZP than crystalline FZP, respectively, due to improved dissolution by nanosization. In conclusion, nCSD/FZP may be a novel oral dosage form with enhanced absorbability facilitating potent therapeutic effects of FZP for the treatment of AP in animals.


Assuntos
Nanopartículas , Pancreatite , Doença Aguda , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Nanopartículas/química , Tamanho da Partícula , Ratos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...