Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Pharmacol Physiol ; 44(6): 639-647, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28261854

RESUMO

The goal of this study was to determine whether the guluronate (G) rich alginate OligoG CF-5/20 (OligoG) could detach cystic fibrosis (CF) mucus by calcium chelation, which is also required for normal mucin unfolding. Since bicarbonate secretion is impaired in CF, leading to insufficient mucin unfolding and thereby attached mucus, and since bicarbonate has the ability to bind calcium, we hypothesized that the calcium chelating property of OligoG would lead to detachment of CF mucus. Indeed, OligoG could compete with the N-terminus of the MUC2 mucin for calcium binding as shown by microscale thermophoresis. Further, effects on mucus thickness and attachment induced by OligoG and other alginate fractions of different length and composition were evaluated in explants of CF mouse ileum mounted in horizontal Ussing-type chambers. OligoG at 1.5% caused effective detachment of CF mucus and the most potent alginate fraction tested, the poly-G fraction of about 12 residues, had similar potency compared to OligoG whereas mannuronate-rich (M) polymers had minimal effect. In conclusion, OligoG binds calcium with appropriate affinity without any overt harmful effect on the tissue and can be exploited for treating mucus stagnation.


Assuntos
Alginatos/química , Alginatos/farmacologia , Cálcio/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Muco/efeitos dos fármacos , Muco/metabolismo , Alginatos/metabolismo , Alginatos/uso terapêutico , Animais , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácido Glucurônico/farmacologia , Ácido Glucurônico/uso terapêutico , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Ácidos Hexurônicos/farmacologia , Ácidos Hexurônicos/uso terapêutico , Íleo/efeitos dos fármacos , Íleo/metabolismo , Camundongos , Polimerização
2.
J Cyst Fibros ; 15(6): 745-751, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27343003

RESUMO

BACKGROUND: Cystic fibrosis (CF) patients experience intestinal complications characterized by the accumulation of thick viscous mucus. CF mice were utilized to determine if a novel guluronate oligomer, OligoG, may be a potential therapy in reducing intestinal mucus and subsequent CF-related intestinal manifestations. METHODS: Intestinal transit, intestinal histology, survival and growth were examined in wildtype and CF mice on regular water and OligoG. CONCLUSIONS: OligoG improves intestinal transit and survival in CF mice by reducing the accumulation of intestinal mucus. OligoG's ability to directly bind mucin, disrupt mucin interaction and/or sequester calcium allowing for mucin expansion may explain the decrease in mucus accumulation.


Assuntos
Alginatos/farmacologia , Fibrose Cística , Trânsito Gastrointestinal/efeitos dos fármacos , Intestino Delgado , Oligossacarídeos/farmacologia , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Secreções Intestinais/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatologia , Camundongos , Muco/metabolismo , Resultado do Tratamento
3.
Mol Pharm ; 13(3): 863-72, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26833139

RESUMO

The host- and bacteria-derived extracellular polysaccharide coating of the lung is a considerable challenge in chronic respiratory disease and is a powerful barrier to effective drug delivery. A low molecular weight 12-15-mer alginate oligosaccharide (OligoG CF-5/20), derived from plant biopolymers, was shown to modulate the polyanionic components of this coating. Molecular modeling and Fourier transform infrared spectroscopy demonstrated binding between OligoG CF-5/20 and respiratory mucins. Ex vivo studies showed binding induced alterations in mucin surface charge and porosity of the three-dimensional mucin networks in cystic fibrosis (CF) sputum. Human studies showed that OligoG CF-5/20 is safe for inhalation in CF patients with effective lung deposition and modifies the viscoelasticity of CF-sputum. OligoG CF-5/20 is the first inhaled polymer therapy, represents a novel mechanism of action and therapeutic approach for the treatment of chronic respiratory disease, and is currently in Phase IIb clinical trials for the treatment of CF.


Assuntos
Alginatos/química , Fibrose Cística/tratamento farmacológico , Mucinas/química , Muco/química , Oligossacarídeos/química , Polímeros/farmacologia , Adolescente , Adulto , Alginatos/metabolismo , Animais , Doença Crônica , Ensaios Clínicos Fase I como Assunto , Feminino , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Humanos , Masculino , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Mucinas/metabolismo , Muco/metabolismo , Oligossacarídeos/metabolismo , Polímeros/química , Ratos , Ratos Sprague-Dawley , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Escarro/química , Suínos , Adulto Jovem
4.
Antimicrob Agents Chemother ; 60(5): 2620-6, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26833153

RESUMO

Biofilm growth is a universal survival strategy for bacteria, providing an effective and resilient approach for survival in an otherwise hostile environment. In the context of an infection, a biofilm provides resistance and tolerance to host immune defenses and antibiotics, allowing the biofilm population to survive and thrive under conditions that would destroy their planktonic counterparts. Therefore, the disruption of the biofilm is a key step in eradicating persistent bacterial infections, as seen in many types of chronic disease. In these studies, we used both in vitro minimum biofilm eradication concentration (MBEC) assays and an in vivo model of chronic biofilm infection to demonstrate the biofilm-disrupting effects of an alginate oligomer, OligoG CF-5/20. Biofilm infections were established in mice by tracheal instillation of a mucoid clinical isolate of Pseudomonas aeruginosa embedded in alginate polymer beads. The disruption of the biofilm by OligoG CF-5/20 was observed in a dose-dependent manner over 24 h, with up to a 2.5-log reduction in CFU in the infected mouse lungs. Furthermore, in vitro assays showed that 5% OligoG CF-5/20 significantly reduced the MBEC for colistin from 512 µg/ml to 4 µg/ml after 8 h. These findings support the potential for OligoG CF-5/20 as a biofilm disruption agent which may have clinical value in reducing the microbial burden in chronic biofilm infections.


Assuntos
Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Colistina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Feminino , Interleucina-1alfa/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo
5.
PLoS One ; 9(11): e112518, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409186

RESUMO

The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity.


Assuntos
Alginatos/farmacologia , Antifúngicos/farmacologia , Aspergillus/citologia , Aspergillus/efeitos dos fármacos , Candida/citologia , Candida/efeitos dos fármacos , Oligossacarídeos/química , Alginatos/química , Proliferação de Células/efeitos dos fármacos , Dimerização , Sinergismo Farmacológico , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Testes de Sensibilidade Microbiana
6.
Am J Respir Cell Mol Biol ; 50(3): 483-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24074505

RESUMO

Pseudomonas aeruginosa (PA) biofilm-associated infections are a common cause of morbidity in chronic respiratory disease and represent a therapeutic challenge. Recently, the ability of a novel alginate oligomer (OligoG) to potentiate the effect of antibiotics against gram-negative, multi-drug-resistant bacteria and inhibit biofilm formation in vitro has been described. Interaction of OligoG with the cell surface of PA was characterized at the nanoscale using atomic force microscopy (AFM), zeta potential measurement (surface charge), and sizing measurements (dynamic light scattering). The ability of OligoG to modify motility was studied in motility assays. AFM demonstrated binding of OligoG to the bacterial cell surface, which was irreversible after exposure to hydrodynamic shear (5,500 × g). Zeta potential analysis (pH 5-9; 0.1-0.001 M NaCl) demonstrated that binding was associated with marked changes in the bacterial surface charge (-30.9 ± 0.8 to -47.0 ± 2.3 mV; 0.01 M NaCl [pH 5]; P < 0.001). Sizing analysis demonstrated that alteration of surface charge was associated with cell aggregation with a 2- to 3-fold increase in mean particle size at OligoG concentrations greater than 2% (914 ± 284 to 2599 ± 472 nm; 0.01 M NaCl [pH 5]; P < 0.001). These changes were associated with marked dose-dependent inhibition in bacterial swarming motility in PA and Burkholderia spp. The ability of OligoG to bind to a bacterial surface, modulate surface charge, induce microbial aggregation, and inhibit motility represents important direct mechanisms by which antibiotic potentiation and biofilm disruption is affected. These results highlight the value of combining multiple nanoscale technologies to further our understanding of the mechanisms of action of novel antibacterial therapies.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanomedicina , Pseudomonas aeruginosa/efeitos dos fármacos , Alginatos/química , Antibacterianos/química , Burkholderia/efeitos dos fármacos , Burkholderia/crescimento & desenvolvimento , Química Farmacêutica , Relação Dose-Resposta a Droga , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Luz , Microscopia de Força Atômica , Nanomedicina/métodos , Nanopartículas , Pseudomonas aeruginosa/fisiologia , Espalhamento de Radiação , Propriedades de Superfície
7.
Biofouling ; 29(4): 413-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23574333

RESUMO

The influence of a novel, safe antibiofilm therapy on the mechanical properties of Pseudomonas aeruginosa and Acinetobacter baumannii biofilms in vitro was characterized. A multiscale approach employing atomic force microscopy (AFM) and rheometry was used to quantify the mechanical disruption of the biofilms by a therapeutic polymer based on a low-molecular weight alginate oligosaccharide (OligoG). AFM demonstrated structural alterations in the biofilms exposed to OligoG, with significantly lower Young's moduli than the untreated biofilms, (149 MPa vs 242 MPa; p < 0.05), a decreased resistance to hydrodynamic shear and an increased surface irregularity (Ra) in the untreated controls (35.2 nm ± 7.6 vs 12.1 nm ± 5.4; p < 0.05). Rheology demonstrated that increasing clinically relevant concentrations of OligoG (<10%) were associated with an increasing phase angle (δ) over a wide range of frequencies (0.1-10 Hz). These results highlight the utility of these techniques for the study of three-dimensional biofilms and for quantifying novel disruption therapies in vitro.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Alginatos/farmacologia , Biofilmes/efeitos dos fármacos , Oligossacarídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Alginatos/química , Alginatos/isolamento & purificação , Aderência Bacteriana/efeitos dos fármacos , Fenômenos Biomecânicos , Módulo de Elasticidade , Hidrodinâmica , Laminaria/química , Testes de Sensibilidade Microbiana , Oligossacarídeos/química , Pseudomonas aeruginosa/fisiologia , Reologia/métodos , Resistência ao Cisalhamento/efeitos dos fármacos , Estresse Mecânico
8.
Antimicrob Agents Chemother ; 56(10): 5134-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22825116

RESUMO

The uncontrolled, often inappropriate use of antibiotics has resulted in the increasing prevalence of antibiotic-resistant pathogens, with major cost implications for both United States and European health care systems. We describe the utilization of a low-molecular-weight oligosaccharide nanomedicine (OligoG), based on the biopolymer alginate, which is able to perturb multidrug-resistant (MDR) bacteria by modulating biofilm formation and persistence and reducing resistance to antibiotic treatment, as evident using conventional and robotic MIC screening and microscopic analyses of biofilm structure. OligoG increased (up to 512-fold) the efficacy of conventional antibiotics against important MDR pathogens, including Pseudomonas, Acinetobacter, and Burkholderia spp., appearing to be effective with several classes of antibiotic (i.e., macrolides, ß-lactams, and tetracyclines). Using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), increasing concentrations (2%, 6%, and 10%) of alginate oligomer were shown to have a direct effect on the quality of the biofilms produced and on the health of the cells within that biofilm. Biofilm growth was visibly weakened in the presence of 10% OligoG, as seen by decreased biomass and increased intercellular spaces, with the bacterial cells themselves becoming distorted and uneven due to apparently damaged cell membranes. This report demonstrates the feasibility of reducing the tolerance of wound biofilms to antibiotics with the use of specific alginate preparations.


Assuntos
Alginatos/química , Antibacterianos/farmacologia , Oligossacarídeos/farmacologia , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Burkholderia/efeitos dos fármacos , Burkholderia/genética , Interações Medicamentosas , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Genótipo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Testes de Sensibilidade Microbiana , Oligossacarídeos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Streptococcus oralis/efeitos dos fármacos , Streptococcus oralis/genética
9.
J Control Release ; 95(3): 435-46, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15023455

RESUMO

Few studies have investigated the internal processes involved in bioadhesive bond formation, particularly where mucus and hydrated polymer contribute jointly to bond structure. This paper reports the first study to spatially map the internal environment within a developing bioadhesive bond, utilising nuclear magnetic resonance (NMR) microscopy to measure localised water self-diffusion coefficients (SDC) and confocal laser scanning microscopy (CLSM) to estimate mucin concentration. In a model bioadhesive bond formed between an alginate matrix and mucin gel, characteristic profiles were observed in which fluorescence measurements showed a region of increasing mucin concentration in the mucus layer region adjacent to the matrix, corresponding closely with a zone of restricted water SDC in the diffusion profiles. These regions extended 144 microm (a normal human gastric layer thickness [Clin. Sci. 95 (1998) 97]) into the mucin layer after just 30 s, increasing to 800 microm after 30 min. The formation of a hydrated polymer layer at the matrix surface, confirmed visually, was also reflected in corresponding gradient changes. The results suggest a progressive dehydration of the mucus gel during bond formation, and the study demonstrates how together, these microscopies can provide non-invasive, quantitative, spatial and time-resolved evidence of internal hydration behaviour during bioadhesive bond formation.


Assuntos
Adesivos/química , Desidratação/prevenção & controle , Difusão , Água/metabolismo , Adesividade/efeitos dos fármacos , Alginatos/química , Animais , Mucosa Gástrica/química , Mucosa Gástrica/citologia , Géis/química , Humanos , Imageamento por Ressonância Magnética/métodos , Teste de Materiais/métodos , Microscopia Confocal/métodos , Mucinas/química , Noruega , Espectrometria de Fluorescência/métodos , Suínos , Tecnologia Farmacêutica/métodos
10.
Eur J Pharm Sci ; 20(4-5): 403-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14659484

RESUMO

The release of acetyl salicylic acid from directly compressed alginate tablets was investigated. The effect of the amount and type of alginate on the drug release rate was evaluated in different formulations. Four different grades of alginate were used. The in vitro release studies were carried out using the apparatus II (paddle) equipment as described in the USP 23/NF dissolution monograph. Dissolution medium was 0.1 M HCl for 2 h followed by phosphate buffer pH 6.8; both at 37 degrees C. Sustained drug release up to 16 h was achieved using sodium alginate in combination with dibasic calcium phosphate.


Assuntos
Alginatos/química , Preparações Farmacêuticas/administração & dosagem , Algoritmos , Anti-Inflamatórios não Esteroides/administração & dosagem , Aspirina/administração & dosagem , Fenômenos Químicos , Físico-Química , Preparações de Ação Retardada , Composição de Medicamentos , Excipientes , Cinética , Solubilidade , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...